

Welcome to FindFace Enterprise Server’s documentation!

FindFace Enterprise Server is a cutting-edge fast and accurate AI-based face recognition technology.

Features:

	Fast and robust AI-based face detection in still images and video.

	Fast and accurate AI-based face identification and verification.

	Customized face processing directives.

	AI recognition of gender, age, emotions and other face features.

	AI face liveness detector.

	Extended biometric API.

	Extended API for video face detection.

	Possibility of cluster deployment. Almost infinite scalability.

	Network or on-premise licensing.

	Integration via HTTP API.

Being integrated into specific solutions and Android/iOS applications, FindFace Enterprise Server can make for accomplishing such goals as biometric identification and access control, customer analytics, customer offer tailoring, offline retargeting, managing white and black lists, sorting and optimizing media libraries, borrower scoring, crime prevention, employee productivity control, building SafeCities, and many more.

FindFace Enterprise Server will be of interest to independent software vendors (ISVs), system integrators, enterprise IT customers, and original equipment manufacturers (OEMs). It can be harnessed in numerous areas, such as retail, banking, social networking, entertainment, sports, event management, dating services, video surveillance, public safety, homeland security, etc.

This guide is intended for developers and system integration engineers who are going to integrate the FindFace Enterprise Server functionality into their systems.

To get a general idea of the deployment process, first take a look at the 6 steps to face recognition. Let’s get started!

Contents:

	Get Started

	Architecture
	Architectural Elements

	Single- and Multi-Host Deployment

	CPU- and GPU-acceleration

	System Requirements
	Basic Configuration

	Benchmark Results

	Examples of Hardware Configuration

	Deploy FindFace Enterprise Server
	Install from Console Installer

	Install Step-by-Step

	Additional findface-video-worker deployment on remote hosts

	Neural Network Models Installation

	Test Requests

	Fast Index

	Biometric API
	How to Use Biometric API

	Biometric API Methods

	Video Face Detection API
	How to Use Video Face Detection API

	Video Face Detection API Methods

	Set Face Processing Directives
	Configure findface-facerouter to Use Plugins

	Basics

	Classes and Methods

	Examples

	Advanced Features
	Direct API requests to findface-extraction-api

	Shard Galleries Statistics

	Direct API Requests to Tarantool

	Hacks for findface-tarantool-server

	Real-time Face Liveness Detection

	Configure Multiple Video Cards Usage

	Maintenance and Troubleshooting
	Checking Component Status

	Analyze Log Files

	Troubleshoot Licensing and findface-ntls

	Automatic Tarantool Recovery

	Appendices
	Neural Network Models

	Components in Depth

	Installation File

Get Started

Follow the 6 steps below to implement the FindFace Enterprise Server’s services to your system:

	Choose deployment architecture.

	Prepare hardware.

	Install FindFace Core. Be sure to test the system work.

	Configure video face detection. Specify directives for face processing.

	Consider using advanced features.

	Finalize the system with coding.

Architecture

Be sure to take a minute to learn the FindFace Enterprise Server architecture. This knowledge is essential for the FindFace Enterprise Server deployment, integration, maintenance and troubleshooting.

In this chapter:

	Architectural Elements

	Single- and Multi-Host Deployment

	CPU- and GPU-acceleration

Architectural Elements

FindFace Enterprise Server consists of the following architectural elements:

	FindFace core,

	(optional) application modules.

Note

Application modules are not available in the basic configuration. To learn more about building a turnkey application with the help of our team, contact our experts by info@ntechlab.com.

The FindFace core includes the following components:

[image: _images/architecture.png]

	Component

	Description

	Vendor

	findface-extraction-api

	A service which uses neural networks to detect a face in an image and extract a
face biometric sample (feature vector), gender, age, emotions and other face
features. CPU- or GPU-acceleration.

	Ntech Lab own deployment

	findface-sf-api

	A service that implements HTTP API for face detection and
face recognition.

	findface-tarantool-server

	A service that provides interaction between the findface-sf-api service and the
biometric database (database that stores face biometric samples)
powered by Tarantool.

	findface-upload

	An NginX-based web server used as a storage for original images, thumbnails and
normalized face images.

	findface-facerouter

	A service used to define processing directives for detected faces.

	findface-video-manager

	A service, part of the video face detection module, that is used for managing the
video face detection functionality, configuring the video face detector
settings and specifying the list of to-be-processed video streams.

	findface-video-worker

	A service, part of the video face detection module, which recognizes a face in video
and posts its normalized image, full frame and metadata (such as the camera ID and
detection time) to the findface-facerouter service for further processing
according to given directives. CPU- or GPU-acceleration.

	findface-ntls

	A license server which interfaces with the NtechLab Global License Server or USB
dongle to verify the FindFace Enterprise Server license.

	Tarantool

	Third-party software which implements the biometric database that stores extracted
biometric samples (feature vectors).

	Tarantool [https://tarantool.io/en/]

	etcd

	Third-party software that implements a distributed key-value store for
findface-video-manager. Used as a coordination service in the distributed
system, providing the video face detector with fault tolerance.

	etcd [https://github.com/etcd-io/etcd]

	NginX

	Third-party software which implements the system web interfaces.

	nginx [https://www.nginx.com]

	memcached

	Third-party software which implements a distributed memory caching system.
Used by findface-extraction-api as a temporary storage for extracted face
biometric samples before they are written to the biometric database powered by
Tarantool.

	memcached [https://memcached.org]

See also

Components in Depth

Single- and Multi-Host Deployment

Depending on your system characteristics and performance requirements, you can opt to install FindFace Enterprise Server standalone or in a cluster environment:

	Deployment

	Recommendation

	Standalone

	You can deploy FindFace Enterprise Server and neural network models on a single host (standalone)
if the number of faces in the database does not exceed some 1,000,000 (recommended limit). This variant makes it easier to
start deployment and cater to basic requirements of your system.

	Cluster

	If the number of faces in the database does exceed 1,000,000, we recommend you to deploy FindFace Enterprise Server
in a cluster environment. In this case, FindFace Enterprise Server
components will be distributed across several hosts. This is a medium and large deployment which can be scaled almost
infinitely. It will also suit professional high load projects with severe requirements to performance.

If you opt for the cluster deployment, we offer you one of the following deployment schemes:

	Deploy FindFace Enterprise Server standalone and distribute additional findface-video-worker components across multiple hosts.

	Distribute the FindFace Enterprise Server components across multiple hosts. If necessary, set up load balancing.

CPU- and GPU-acceleration

The findface-extraction-api and findface-video-worker services can be either CPU- or GPU-based. During installation from the developer-friendly installer, you will have an opportunity to choose the acceleration type you need.

If you opt to install FindFace Enterprise Server from the repository package, deploy the findface-extraction-api and findface-video-worker packages on a CPU-based server, and the findface-extraction-api-gpu and/or findface-video-worker-gpu packages on a GPU-based server.

Important

Refer to System Requirements when choosing hardware configuration.

Important

If the resolution of a camera(s) in use is more than 1280x720px, it is strongly recommended to use the GPU-accelerated package findface-video-worker-gpu.

Important

The face liveness detection can be enabled only on the GPU-accelerated video face detector findface-video-worker-gpu.

System Requirements

To calculate the FindFace Enterprise Server host(s) characteristics, use the requirements provided in this chapter.

Tip

Be sure to learn about the FindFace Enterprise Server architecture first.

In this chapter:

	Basic Configuration

	Benchmark Results

	Testing Setup

	Resource Consumption: findface-extraction-api and findface-extraction-api-gpu

	Performance: findface-extraction-api and findface-extraction-api-gpu

	Performance: findface-video-worker and findface-video-worker-gpu

	Examples of Hardware Configuration

	CPU-based Server

	GPU-based Server

Basic Configuration

Important

If the resolution of a camera(s) in use is more than 1280x720px, it is strongly recommended to use the GPU-accelerated package findface-video-worker-gpu.

Important

The face liveness detection can be enabled only on the GPU-accelerated video face detector findface-video-worker-gpu.

	
	Minimum

	Recommended

	CPU

	Intel Core i5 CPU with 4 physical cores 2.8 GHz

	Intel Xeon E5v3 with 6 physical cores, or higher or similar CPU

	The own needs of FindFace Enterprise Server require 2 cores HT > 2.5 GHz. The characteristics also depend on the number of
cameras in use. A single camera 720p@25FPS requires 2 cores >2.5 GHz. AVX2 support. 6th-8th generation Intel® Core™ and Intel® Xeon®

	GPU (optional)

	Nvidia Geforce® GTX 1050 Ti with 4Gb RAM (only for running
findface-extraction-api gpu-package with elderberry_160, not
enough for findface-video-worker-gpu).

	Nvidia Geforce® GTX 1080+ with 8+Gb RAM

	Supported series: GeForce (from Pascal architecture), Tesla (from Pascal architecture and Volta v100)

	RAM

	10 Gb

	16+ Gb

	The own needs of FindFace Enterprise Server require 8 Gb.
The RAM consumption also depends on the number of cameras in use. A single camera 720p@25FPS requires 2 GB RAM

	HDD

	16 Gb

	16+ Gb

	The own needs of the operating system and FindFace Enterprise Server require 15 GB.

	Operating system

	Ubuntu 16.04 x64 only

Tip

For more accurate hardware selection, consult the FindFace Enterprise Server resource consumption and performance benchmark results.

Benchmark Results

Here you can see the FindFace Enterprise Server resource consumption and performance benchmark results. Use these data to select your hardware configuration.

Note

RAM usage and performance may slightly vary from test to test.

Warning

Strictly not recommended to use face/elderberry_160 for work.

Testing Setup

Package versions:

	findface-extraction-api-cpu 2.6.999.1910+261.gebb8df6

	findface-extraction-api-gpu

	findface-video-worker-cpu 2.6.999.1910+261.gebb8df6

	findface-video-worker-gpu

	findface-tarantool-server 2.6.999.1910+261.gebb8df6

Hardware:

	Processor: Intel Core i5-8400 @ 3.60GHz (6 Cores)

	Motherboard: ASUS PRIME H370M-PLUS

	Memory: 2 x 8192 MB DDR4-2400MHz

	Graphics: Gigabyte NVIDIA GeForce GTX 1060 6GB

Software:

	OS: Ubuntu 16.04, Kernel: 4.15.0-29-generic (x86_64)

	Screen Resolution: 1920x1200

CPU performance:

sysbench 0.4.12: multi-threaded system evaluation benchmark

Running the test with following options:
Number of threads: 1

Doing CPU performance benchmark

Threads started!
Done.

Maximum prime number checked in CPU test: 10000

Test execution summary:
 total time: 9.1128s
 total number of events: 10000
 total time taken by event execution: 9.1112
 per-request statistics:
 min: 0.82ms
 avg: 0.91ms
 max: 1.47ms
 approx. 95 percentile: 1.02ms

Threads fairness:
 events (avg/stddev): 10000.0000/0.00
 execution time (avg/stddev): 9.1112/0.00

GPU performance:

Unigine Heaven 4.0:
 pts/unigine-heaven-1.6.4 [Resolution: 1920 x 1080 - Mode: Windowed - Renderer: OpenGL]
 Test 1 of 2
 Estimated Trial Run Count: 3
 Estimated Test Run-Time: 15 Minutes
 Estimated Time To Completion: 29 Minutes
 Started Run 1 @ 17:54:37
 Started Run 2 @ 17:59:15
 Started Run 3 @ 18:03:52 [Std. Dev: 0.29%]

 Test Results:
 86.6473
 86.1475
 86.4553

 Average: 86.42 Frames Per Second

Unigine Heaven 4.0:
 pts/unigine-heaven-1.6.4 [Resolution: 1920 x 1080 - Mode: Fullscreen - Renderer: OpenGL]
 Test 2 of 2
 Estimated Trial Run Count: 3
 Estimated Time To Completion: 15 Minutes
 Started Run 1 @ 18:08:33
 Started Run 2 @ 18:13:09
 Started Run 3 @ 18:17:45 [Std. Dev: 1.37%]

 Test Results:
 87.7017
 89.5186
 90.023

 Average: 89.08 Frames Per Second

Resource Consumption: findface-extraction-api and findface-extraction-api-gpu

RAM usage: findface-extraction-api

	Model

	# instances

	RAM, MB

	# instances

	RAM, MB

	# instances

	RAM, MB

	face/elderberry_576.cpu

	1

	3730

	2

	7450

	3

	11000

	face/elderberry_160.cpu

	1590

	2800

	4050

	face/elderberry_576.cpu
+ features (faceattr/age.v1.cpu,
faceattr/beard.v0.cpu,
faceattr/emotions.v1.cpu,
faceattr/gender.v2.cpu,
faceattr/glasses3.v0.cpu)

	5568

	10800

	
	

	face/elderberry_160.cpu
+ features (faceattr/age.v1.cpu,
faceattr/beard.v0.cpu,
faceattr/emotions.v1.cpu,
faceattr/gender.v2.cpu,
faceattr/glasses3.v0.cpu)

	3473

	6250

	9400

	Features only
(faceattr/age.v1.cpu,
faceattr/beard.v0.cpu,
faceattr/emotions.v1.cpu,
faceattr/gender.v2.cpu,
faceattr/glasses3.v0.cpu)

	2270

	3900

	5800

RAM usage: findface-extraction-api-gpu

Note

findface-extraction-api-gpu allows only 1 model instance.

	Model

	RAM, MB

	face/elderberry_576.gpu

	~2200 (up to 4.5 Gb on initialization)

	face/elderberry_160.gpu

	~850 (up to 1.8 Gb on initialization)

	face/elderberry_576.gpu
+ features (faceattr/age.v1.gpu,
faceattr/beard.v0.gpu,
faceattr/emotions.v1.gpu,
faceattr/gender.v2.gpu,
faceattr/glasses3.v0.gpu)

	~3100 (up to 6.3 Gb on initialization)

	face/elderberry_160.gpu
+ features (faceattr/age.v1.gpu,
faceattr/beard.v0.gpu,
faceattr/emotions.v1.gpu,
faceattr/gender.v2.gpu,
faceattr/glasses3.v0.gpu)

	~1871 (up to 4 Gb on initialization)

	Features only
(faceattr/age.v1.gpu,
faceattr/beard.v0.gpu,
faceattr/emotions.v1.gpu,
faceattr/gender.v2.gpu,
faceattr/glasses3.v0.gpu)

	1200

Performance: findface-extraction-api and findface-extraction-api-gpu

Speed: findface-extraction-api

	Model

	Time, ms (i5-8400)

	face/elderberry_576.cpu

	620

	face/elderberry_160.cpu

	350

	face/elderberry_576.cpu
+ features (faceattr/age.v1.cpu,
faceattr/beard.v0.cpu,
faceattr/emotions.v1.cpu,
faceattr/gender.v2.cpu,
faceattr/glasses3.v0.cpu)

	655

	face/elderberry_160.cpu
+ features (faceattr/age.v1.cpu,
faceattr/beard.v0.cpu,
faceattr/emotions.v1.cpu,
faceattr/gender.v2.cpu,
faceattr/glasses3.v0.cpu)

	380

	Features only
(faceattr/age.v1.cpu,
faceattr/beard.v0.cpu,
faceattr/emotions.v1.cpu,
faceattr/gender.v2.cpu,
faceattr/glasses3.v0.cpu)

	300

Speed: findface-extraction-api-gpu

	Model

	Time, ms (1060TI)

	face/elderberry_576.gpu

	240

	face/elderberry_160.gpu

	225

	face/elderberry_576.gpu
+ features (faceattr/age.v1.gpu,
faceattr/beard.v0.gpu,
faceattr/emotions.v1.gpu,
faceattr/gender.v2.gpu,
faceattr/glasses3.v0.gpu)

	260

	face/elderberry_160.gpu
+ features (faceattr/age.v1.gpu,
faceattr/beard.v0.gpu,
faceattr/emotions.v1.gpu,
faceattr/gender.v2.gpu,
faceattr/glasses3.v0.gpu)

	235

Performance: findface-video-worker and findface-video-worker-gpu

CPU/RAM consumption and speed: findface-video-worker

	Stream

	RAM, MB

	CPU utilization,% (i5-8400 6 cores)

	Processing speed, FPS* (i5-8400)

	1x 720p25FPS

	370

	230

	62

	2x 720p25FPS

	755

	500

	56

	3x 720p25FPS

	1040

	580

	45

	4x 720p25FPS

	1437

	600

	36

	5x 720p25FPS

	1900

	600

	24

	8x 720p25FPS

	2650

	600

	18

	1x 1080p25FPS

	502

	250

	41

	2x 1080p25FPS

	1023

	508

	37

	3x 1080p25FPS

	1529

	590

	30

	4x 1080p25FPS

	2031

	594

	23

	1x 720p25FPS +
1x 1080p25FPS

	890

	453

	38

	2x 720p25FPS +
2x 1080p25FPS

	1750

	590

	21

Important

If video processing speed is less than the number of FPS in video, it means that the system is running low on resources and the lack of resources causes the video face detector to drop frames. Avoid this situation as it can lead to missing out on faces, instability and potential failures.

To check your resource consumption, execute:

sudo journalctl -f -a -u findface-video-worker | grep dropped

The following lines indicate that the system has less resources than necessary:

findface-video-worker[28882]: [2] 2 frames dropped!
findface-video-worker[28882]: [1] 6 frames dropped!

In this case, consider to change component settings or hardware configuration.

GPU RAM consumption and speed: findface-video-worker-gpu

	Stream

	GPU RAM, MB

	Processing speed, FPS* (1060TI)

	Without
streams

	600

	
	

	1x 720p25FPS

	656

	254

	2x 720p25FPS

	738

	126

	4x 720p25FPS

	858

	63

	8x 720p25FPS

	1117

	30

	1x 1080p25FPS

	735

	202

	2x 1080p25FPS

	935

	96

	4x 1080p25FPS

	1185

	48

	8x 1080p25FPS

	2650

	48

	1x 720p25FPS +
1x 1080p25FPS

	803

	453

	2x 720p25FPS +
2x 1080p25FPS

	1100

	54

	4x 720p25FPS +
4x 1080p25FPS

	1500

	26

	8x 720p25FPS +
8x 1080p25FPS

	2650

	48

Important

If video processing speed is less than the number of FPS in video, it means that the system is running low on resources and the lack of resources causes the video card to accumulate frames in its memory. Avoid this situation as it can lead to instability and potential failures.

To view the current processing speed, execute the following command on the findface-video-manager host console:

curl -s http://127.0.0.1:18810/jobs | jq -r '.[]|("id="+(.id|tostring)+" url="+.stream_url+" FPS="+(.statistic.processing_fps|tostring))'

In the response, you will find each video stream processing speed. For example, enough amount of resources when processing 7 video streams with characteristics h264 (High) ([27][0][0][0] / 0x001B), yuvj420p(pc, bt709), 1920x1080, 25 fps, 25 tbr, 90k tbn, 180k tbc will result in the following response:

id=10 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=27.189745
id=5 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=27.189854
id=6 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=27.589714
id=3 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=27.189857
id=4 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=27.189857
id=7 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=27.389784
id=9 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=27.189857

Lack of resources when processing 8 video streams with the same characteristics will give FPS (processing speed) less than the video’s 25 fps:

id=8 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=23.772333
id=10 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=23.772415
id=5 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=23.772339
id=6 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=23.372803
id=3 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=23.772339
id=4 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=23.772339
id=7 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=20.775822
id=9 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=22.573729

Even smaller values will be registered when processing 10 video streams with the same characteristics:

id=7 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=20.380642
id=9 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=20.380642
id=2 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=20.380646
id=8 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=20.380642
id=10 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=9.984919e-05
id=5 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=20.380642
id=6 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=20.380642
id=1 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=20.380651
id=3 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=20.180836
id=4 url=http://restreamer.int.ntl/hls/openspace.m3u8 FPS=19.581406

Important

If findface-video-worker-gpu processes video streams of equal FPS, the number of processed streams doesn’t severely affect the GPU memory consumption, as all the streams are processed by the same worker. On the other hand, if findface-video-worker-gpu processes video streams of different FPS, it severely increases the memory consumption as different streams have to be processed by different workers.

Examples of Hardware Configuration

Important

The exemplary hardware configurations in this section are only for reference. Do not use these data to select your production instance configuration. To select the optimal configuration, ask advice from our experts by support@ntechlab.com.

Resource consumption may vary depending on the following factors:

	The number of HTTP requests per second, sent to findface-extraction-api (depends on the number of faces in a camera field of view, the number of user search requests, etc.).

	Video quality (video interference, colourful video background take up more resources).

	Motion intensity in video.

The following examples are given for standard component configuration.

Important

Changes in component settings may result in significant changes in resource consumption.

CPU-based Server

	Cameras

	CPU

	RAM, GB

	Extraction

	1x720p25FPS

	Intel Core i5 - 6400 (4 cores 2700MHz)

	8

	elderberry_160 + features*
model_instances = 1
or
elderberry_576
model_instances = 1

	2x720p25FPS

	min: Intel Core i7 - 6700 (4 core 3400MHz);
recommended: Intel Core i7 - 6850K (6 cores 3600MHz)

	12

	elderberry_160 + features*
model_instances = 2
or
elderberry_576 + features*
model_instances = 2

	4x720p25FPS

	min: Intel Core i7 - 8700K (6 cores 3700MHz);
recommended: Intel Core i9 - 9900K (8 cores 3600MHz)

	16

	elderberry_576 + features*
model_instances = 2
or
elderberry_576
model_instances = 3

	1x1080p25FPS

	min: Intel Core i7 - 6700 (4 cores 3400MHz);
recommended: Intel Core i7 - 6850K (6 core 3600MHz)

	32

	elderberry_576 + features*
model_instances = 1
or
elderberry_576
model_instances = 2

GPU-based Server

	Cameras

	CPU

	RAM, GB

	GPU

	Installation

	Extraction

	Video

	1x720p25FPS

	Intel Core i5 - 6400 (4 cores 2700MHz)

	8

	nVidia GeForce
GTX1060 6Gb

	extraction-api on CPU
video-worker on GPU

	elderberry_160 + features*
model_instances = 1 or
elderberry_576.cpu
model_instances = 1

	basic

	extraction-api on GPU
video-worker on CPU

	basic

	basic

	2x720p25FPS

	Intel Core i5 - 6400 (4 cores 2700MHz)

	12

	nVidia GeForce
GTX1060 6Gb

	extraction-api on CPU
video-worker on GPU

	elderberry_160 + features*
model_instances = 2 or
elderberry_576.cpu + features
model_instances = 1 or
elderberry_576.cpu
model_instances = 2

	basic

	extraction-api on GPU
video-worker on CPU

	basic

	basic

	4x720p25FPS

	Intel Core i5 - 8400 (4 cores 2800MHz)

	16

	nVidia GeForce
GTX1060 6Gb

	extraction-api on CPU
video-worker on GPU

	elderberry_576.cpu + features*
model_instances = 2

	basic

	8x720p25FPS

	Intel Core i5 - 8400 (4 cores 2800MHz)
Intel Core i7 - 6700 (4 cores 3400MHz)

	16

	nVidia GeForce
GTX1060 TI 6Gb

	extraction-api on CPU
video-worker on GPU

	elderberry_576.cpu + features*
model_instances = 2

	basic

	16x720p25FPS

	Intel Core i7 - 6700 (4 cores 3400MHz)
Intel Core i7 - 8700K (6 cores 3700MHz)
Intel Core i9 - 9900K (8 cores 3600MHz)

	32

	2x nVidia GeForce
GTX1060 TI 6Gb

	extraction-api on CPU
video-worker on GPU

	elderberry_576.cpu + features*
model_instances = 4 or

	basic

Deploy FindFace Enterprise Server

For your convenience, we offer you several installation options:

	Install from a console installer

	Install step-by-step from an APT repository

After the installation, test your system work and configure fast index search.

In this chapter:

	Install from Console Installer

	Install Step-by-Step

	Additional findface-video-worker deployment on remote hosts

	Neural Network Models Installation

	Test Requests

	Fast Index

Install from Console Installer

To install FindFace Enterprise Server, use a developer-friendly console installer.

Tip

Be sure to consult the system requirements prior.

Do the following:

	Download the installer file findface-security-2.1.0-server-3.1.0.run.

	Put the .run file into some directory on the designated host (for example, /home/username).

	From this directory, make the .run file executable.

chmod +x findface-security-2.1.0-server-3.1.0.run

	Execute the .run file.

sudo ./findface-security-2.1.0-server-3.1.0.run

The installer will ask you a few questions and perform several automated checks to ensure that the host meets the system requirements. Fill out the prompts appropriately once requested. The questions are the following:

	Product to install: FindFace Server.

	Installation type:

	1: install FindFace Enterprise Server standalone.

	2: install FindFace Enterprise Server and configure it to interact with additional remote findface-video-worker instances.

Tip

To install only findface-video-worker on a host, refer to Additional findface-video-worker deployment on remote hosts.

	3: install only the apt repository that can be further used for the step-by-step deployment.

Important

This installation type doesn’t provide installation of neural network models essential for the findface-extraction-api functioning. Be sure to manually install them on the host(s) with findface-extraction-api.

	4: fully customized installation.

Important

Be sure to manually install neural network models on the host(s) with findface-extraction-api.

	Type of findface-video-worker package: CPU or GPU.

	Type of findface-extraction-api package: CPU or GPU.

Once all the questions answered, the answers will be saved to a file /tmp/<findface-installer-*>.json. You can edit this file and use it to install FindFace Enterprise Server on other hosts without having to answer the questions again.

After that, the FindFace Enterprise Server components will be automatically installed, configured and/or started in the following configuration:

	Service

	Configuration

	etcd

	Installed and started.

	memcached

	Installed and started.

	nginx

	Installed and started.

	findface-ntls

	Installed and started.

	findface-tarantool-server

	Installed and started. The number of instances (shards) is calculated using the formula:
N = max(min(mem_mb // 2000, cpu_cores), 1), i.e. it is equal to the RAM size in MB divided by
2000, or the number of CPU physical cores (but at least 1 shard).

	findface-extraction-api

	Installed and started.

	findface-sf-api

	Installed and started.

	findface-facerouter

	Installed and started.

	findface-upload

	Installed.

	findface-video-manager

	Installed and started.

	findface-video-worker(-gpu)

	Installed and started.

	findface-data-*

	Neural network models for face and face features recognition (gender, age, emotions, glasses, beard).
Installed.

	findface-gpudetector-data/

	NTechLab gpu detector data. Installed.

	jq

	Installed. Used to pretty-print API responses from FindFace Enterprise Server.

Once the installation is complete, the following output will be shown on the console:

Tip

Be sure to save this data: you will need it later.

###
Installation is complete
###
- upload your license to http://127.0.0.1:3185/
- FindFace SF-API address: http://172.20.77.78:18411/
- FindFace VideoManager address: http://172.20.77.78:18411/

	Upload the FindFace Enterprise Server license file via the findface-ntls web interface http://<ntls_host_IP_address>:3185.

Note

The IP address is shown in the links to the FindFace web services in the following way: as an external IP address if the host belongs to a network, or 127.0.0.1 otherwise.

	To automatically install FindFace Enterprise Server on another host without answering the installation questions, use the /tmp/<findface-installer-*>.json file. Execute:

sudo ./findface-security-2.1.0-server-3.1.0.run -f /tmp/<findface-installer-*>.json

Tip

You can find an example of the installation file in Installation File.

Install Step-by-Step

This section will guide you through the FindFace Enterprise Server step-by-step installation process. Follow the instructions below minding the sequence.

In this section:

	Install APT Repository

	Prerequisites

	Provide Licensing

	Deploy findface-extraction-api

	Deploy findface-tarantool-server

	Deploy findface-upload

	Deploy findface-sf-api

	Deploy findface-facerouter

	Deploy Video Face Detection

Install APT Repository

First of all, install the FindFace apt repository as follows:

	Download the installer file findface-security-2.1.0-server-3.1.0.run.

	Put the .run file into some directory on the designated host (for example, /home/username).

	From this directory, make the .run file executable.

chmod +x findface-security-2.1.0-server-3.1.0.run

	Execute the .run file.

sudo ./findface-security-2.1.0-server-3.1.0.run

The installer will ask you a few questions and perform several automated checks to ensure that the host meets the system requirements. Fill out the prompts appropriately once requested. The questions are the following:

	Product to install: FindFace Server.

	Installation type: repo: Don't install anything, just set up the APT repository.

After that, the FindFace apt repository will be automatically installed.

Important

As this installation type doesn’t provide installation of neural network models essential for the findface-extraction-api functioning, be sure to manually install them on the host(s) with findface-extraction-api.

Prerequisites

FindFace Enterprise Server requires such third-party software as etcd and memcached. Do the following:

	Install the prerequisite packages as such:

sudo apt update
sudo apt install -y etcd memcached

	Open the memcached configuration file. Set the maximum memory to use for items in megabytes: -m 512. Set the max item size: -I 16m. If one or both of these parameters are absent, simply add them in the file.

sudo vi /etc/memcached.conf

-m 512
-I 16m

	Enable the prerequisite services autostart and launch the services:

sudo systemctl enable etcd.service memcached.service
sudo systemctl start etcd.service memcached.service

Provide Licensing

You receive a license file from your NTechLab manager. If you opt for the on-premise licensing, we will also send you a USB dongle.

The FindFace Enterprise Server licensing is provided as follows:

	Deploy findface-ntls, license server in the FindFace core.

Important

There must be only one findface-ntls instance in each FindFace Enterprise Server installation.

Tip

In the findface-ntls configuration file, you can change the license folder and specify your proxy server IP address if necessary. You can also change the findface-ntls web interface remote access settings. See findface-ntls for details.

sudo apt update
sudo apt install -y findface-ntls
sudo systemctl enable findface-ntls.service && sudo systemctl start findface-ntls.service

	Upload the license file via the findface-ntls web interface in one of the following ways:

	Navigate to the findface-ntls web interface http://<NTLS_IP_address>:3185/#/. Upload the license file.

Tip

Later on, use the findface-ntls web interface to consult your license information, and upgrade or extend your license.

	Directly put the license file into the license folder (by default, /ntech/license, can be changed in the /etc/findface-ntls.cfg configuration file).

	For the on-premise licensing, insert the USB dongle into a USB port.

	If the licensable components are installed on remote hosts, specify the IP address of the findface-ntls host in their configuration files. See findface-extraction-api, findface-tarantool-server, Video face detection: findface-video-manager and findface-video-worker for details.

See also

Troubleshoot Licensing and findface-ntls

Deploy findface-extraction-api

To deploy the findface-extraction-api component, do the following:

Important

This component requires installation of neural network models.

	Install findface-extraction-api as such:

sudo apt install -y findface-extraction-api

Note

To install the GPU-accelerated findface-extraction-api component, use findface-extraction-api-gpu in the command.

	Open the findface-extraction-api.ini configuration file.

sudo vi /etc/findface-extraction-api.ini

	Specify the IP address of the findface-ntls host if findface-ntls is installed on a remote host. See Provide Licensing.

license_ntls_server: 192.168.113.2:3133

	Configure other parameters if needed. For example, enable or disable fetching Internet images.

fetch:
 enabled: true
 size_limit: 10485760

	The min_face_size and max_face_size parameters do not work as filters. They rather indicate the guaranteed detection interval. Pick up their values carefully as these parameters affect performance.

nnd:
 min_face_size: 30
 max_face_size: .inf

	The model_instances parameter indicates how many findface-extraction-api instances are used. Specify the number of instances from your license. The default value (0) means that this number is equal to the number of CPU cores.

Note

This parameter severely affects RAM consumption.

model_instances: 2

	To estimate the face quality, enable the quality_estimator. In this case, extraction-api will return the quality score in the detection_score parameter.

Tip

Interpret the quality score further in analytics. Upright faces in frontal position are considered the best quality. They result in values around 0, mostly negative (such as -0.00067401276, for example). Inverted faces and large face angles are estimated with negative values some -5 and less.

quality_estimator: true

	Enable recognition models for face features such as gender, age, emotions, glasses3, and/or beard, subject to your needs. Be sure to choose the right acceleration type for each model, matching the acceleration type of findface-extraction-api: CPU or GPU. Be aware that findface-extraction-api on CPU can work only with CPU-models, while findface-extraction-api on GPU supports both CPU- and GPU-models.

models:
 age: faceattr/age.v1.cpu.fnk
 emotions: faceattr/emotions.v1.cpu.fnk
 face: face/elderberry_576.cpu.fnk
 gender: faceattr/gender.v2.cpu.fnk
 beard: faceattr/beard.v0.cpu.fnk
 glasses3: faceattr/glasses3.v0.cpu.fnk

The following models are available:

	Face feature

	Acceleration

	Configuration file parameter

	face
(biometry)

	CPU

	face: face/elderberry_576.cpu.fnk

	GPU

	face: face/elderberry_576.gpu.fnk

	age

	CPU

	age: faceattr/age.v1.cpu.fnk

	GPU

	age: faceattr/age.v1.gpu.fnk

	gender

	CPU

	gender: faceattr/gender.v2.cpu.fnk

	GPU

	gender: faceattr/gender.v2.gpu.fnk

	emotions

	CPU

	emotions: faceattr/emotions.v1.cpu.fnk

	GPU

	emotions: faceattr/emotions.v1.gpu.fnk

	glasses3

	CPU

	glasses3: faceattr/glasses3.v0.cpu.fnk

	GPU

	glasses3: faceattr/glasses3.v0.gpu.fnk

	beard

	CPU

	beard: faceattr/beard.v0.cpu.fnk

	GPU

	beard: faceattr/beard.v0.gpu.fnk

Tip

To disable a recognition model, simply pass an empty value to a relevant parameter. Do not remove the parameter itself as in this case the system will be searching for the default model.

models:
 gender: ""
 age: ""
 emotions: ""

	Enable the findface-extraction-api service autostart and launch the service.

sudo systemctl enable findface-extraction-api.service && sudo systemctl start findface-extraction-api.service

Deploy findface-tarantool-server

The findface-tarantool-server component connects the Tarantool database and the findface-sf-api component, transferring search results from the database to findface-sf-api for further processing. To increase search speed, multiple findface-tarantool-server shards can be created on each Tarantool host. Their running concurrently leads to a remarkable increase in performance.
Each shard can handle up to approximately 10,000,000 faces. In the case of the standalone deployment, you need only one shard (already created by default), while in a cluster environment the number of shards has to be calculated depending on your hardware configuration and database size (see details below).

To deploy the findface-tarantool-server component, do the following:

	Install findface-tarantool-server

sudo apt update
sudo apt install -y findface-tarantool-server

	Disable autostart and stop the Tarantool exemplary service.

sudo systemctl disable tarantool@example && sudo systemctl stop tarantool@example

	Open the configuration file:

sudo vi /etc/tarantool/instances.enabled/FindFace.lua

	Edit the maximum memory usage. The memory usage must be set in bytes, depending on the number of faces the shard handles, at the rate roughly 1280 byte per face. For example, the value 1.2*1024*1024*1024 corresponds to 1,000,000 faces:

memtx_memory = 1.2 * 1024 * 1024 * 1024,

	Specify the IP address of the findface-ntls host if findface-ntls is installed on a remote host:

FindFace.start(“127.0.0.1”, 8001, {license_ntls_server=“192.168.113.2:3133”})

	By default, you can access Tarantool only from a localhost (127.0.0.1). If you plan to be accessing Tarantool from a certain remote host, either specify this remote host IP address in the FindFace.start section, or change 127.0.0.1 to 0.0.0.0 in the same section to allow access to Tarantool from any IP address.

Tip

To allow access only from a certain remote host (192.168.113.10 in the example), configure as follows:

FindFace.start("192.168.113.10", 8001, {license_ntls_server=“192.168.113.2:3133”})

To allow access from any IP address, apply 0.0.0.0 instead:

FindFace.start("0.0.0.0", 8001, {license_ntls_server=“192.168.113.2:3133”})

	In the meta_scheme parameter, create a database structure to store the face recognition results. The structure is created as a set of fields. Describe each field with the following parameters:

	id: field id;

	name: field name, must be the same as the name of a relevant face parameter;

	field_type: data type;

	default: field default value. If a default value exceeds ‘1e14 – 1’, use a string data type to specify it, for example, "123123.." instead of 123123...

box.cfg{
 listen = '127.0.0.1:33001',

 vinyl_dir = '/opt/ntech/var/lib/tarantool/name',
 work_dir = '/opt/ntech/var/lib/tarantool/name',
 memtx_dir = '/opt/ntech/var/lib/tarantool/name/snapshots',
 wal_dir = '/opt/ntech/var/lib/tarantool/name/xlogs',

 memtx_memory = 16 * 1024 * 1024 * 1024,

 checkpoint_interval = 3600*4,
 checkpoint_count = 3,

 -- force_recovery = true,
}

pcall(function() box.schema.user.grant('guest', 'execute,read,write', 'universe') end)

FindFace = require("FindFace")
FindFace.start(
 "0.0.0.0",
 8001,
 {
 license_ntls_server="127.0.0.1:3133",
 facen_size=576,
 meta_scheme = {

 {
 id = 1,
 name = 'm:timestamp',
 field_type = 'unsigned',
 default = 0
 },

 {
 id = 2,
 name = 'feat',
 field_type = 'string',
 default = ""
 },

 {
 id = 3,
 name = 'normalized_id',
 field_type = 'string',
 default = ""
 },

 {
 id = 4,
 name = 'm:camera',
 field_type = 'string',
 default = ""
 },

 {
 id = 5,
 name = 'm:photo',
 field_type = 'string',
 default = ""
 },

 {
 id = 6,
 name = 'm:thumbnail',
 field_type = 'string',
 default = ""
 },

 {
 id = 7,
 name = 'm:score',
 field_type = 'unsigned',
 default = "10000000000000000000"
 },

 {
 id = 8,
 name = 'm:bbox',
 field_type = 'string',
 default = ""
 },

 {
 id = 9,
 name = 'm:labels',
 field_type = 'set[string]',
 default = {}
 },

 {
 id = 10,
 name = 'm:is_friend',
 field_type = 'unsigned',
 default = 0
 },
 }
 }
)

	(Optional) If there are more than 10,000,000 faces or so on a single shard, the search may take too long. In the case of a large installation, it is advised to create additional findface-tarantool-server shards, observing the following rules:

	One shard can successfully handle up to approximately 10,000,000 faces.

	The number of shards on a single host must not exceed the number of its physical processor cores minus 1. Bear it in mind, when designing your system architecture in a cluster environment.

To create multiple shards, simply multiply the configuration file for the default shard (/etc/tarantool/instances.enabled/FindFace.lua) overriding the default shard IP address and port with new values. To do so, write a bash script (e.g. shard.sh) that will automatically create configuration files for all shards on a particular host. The script below can be used as an excellent starting point for your own code. The exemplary script creates 4 shards listening to the ports: findface-tarantool-server 33001..33004 and http 8001..8004.

#!/bin/sh
set -e

for I in `seq 1 4`; do
 TNT_PORT=$((33000+$I)) &&
 HTTP_PORT=$((8000+$I)) &&
 sed "
 s#/opt/ntech/var/lib/tarantool/default#/opt/ntech/var/lib/tarantool/shard_$I#g;
 s/listen = .*$/listen = '127.0.0.1:$TNT_PORT',/;
 s/\"127.0.0.1\", 8001,/\"0.0.0.0\", $HTTP_PORT,/;
 " /etc/tarantool/instances.enabled/FindFace.lua > /etc/tarantool/instances.enabled/FindFace_shard_$I.lua;

 mkdir -p /opt/ntech/var/lib/tarantool/shard_$I/snapshots
 mkdir -p /opt/ntech/var/lib/tarantool/shard_$I/xlogs
 mkdir -p /opt/ntech/var/lib/tarantool/shard_$I/index
 chown -R tarantool:tarantool /opt/ntech/var/lib/tarantool/shard_$I
 echo "Shard #$I inited"
done;

Tip

Download the exemplary script.

Run the script from the home directory.

sudo sh ~/shard.sh

Check the configuration files created.

ls /etc/tarantool/instances.enabled/

##example.lua FindFace.lua FindFace_shard_1.lua FindFace_shard_2.lua FindFace_shard_3.lua FindFace_shard_4.lua

	Enable the findface-tarantool-server shard autostart and launch the shard.

sudo systemctl enable tarantool@FindFace.service && sudo systemctl start tarantool@FindFace.service

In the case of multiple shards, you can do so by analogy with the following example (launching 4 shards):

for I in `seq 1 4`; do sudo systemctl enable tarantool@FindFace_shard_$I; done;
for I in `seq 1 4`; do sudo systemctl start tarantool@FindFace_shard_$I; done;

Deploy findface-upload

To store all original images ever sent to the system for processing, as well as such FindFace core artifacts as face thumbnails and normalized images, you will need the findface-upload service.

Tip

Skip the findface-upload deployment if you do not want to store these data on the FindFace Enterprise Server host. In this case, the system will be saving only face features vectors (facens) in the Tarantool-powered biometric database.

Install findface-upload as such:

sudo apt update
sudo apt install -y findface-upload

By default the original images, thumbnails and normalized images are stored at /var/lib/ffupload/uploads/.

Deploy findface-sf-api

To deploy the findface-sf-api component, do the following:

	Install findface-sf-api as such:

sudo apt update
sudo apt install -y findface-sf-api

	Open the /etc/findface-sf-api.ini configuration file.

sudo vi /etc/findface-sf-api.ini

	If FindFace Enterprise Server is being deployed in a cluster environment, specify the IP addresses and ports of the findface-extraction-api host (the extraction-api parameter), the findface-tarantool-server shards (storage-api, in the format: http://IP_address:port/v2/), and the findface-upload host (upload_url).

extraction-api:
 extraction-api: http://10.220.85.120:18666
storage-api:
 shards:
 - master: http://10.200.85.115:8003/v2/
 - master: http://10.200.85.120:8004/v2/
 - master: http://10.200.85.120:8005/v2/
 - master: http://10.200.85.120:8006/v2/
 slave: ‘’
upload_url: http://127.0.0.1:3333/uploads/

	Enable the findface-sf-api service autostart and launch the service.

sudo systemctl enable findface-sf-api.service && sudo systemctl start findface-sf-api.service

Deploy findface-facerouter

To deploy the findface-facerouter component, do the following:

	Install findface-facerouter as such:

sudo apt update
sudo apt install -y findface-facerouter

	Open the /etc/findface-facerouter.py configuration file.

sudo vi /etc/findface-facerouter.py

	If the findface-facerouter and findface-sf-api components are installed on different hosts, uncomment the sfapi_url parameter and specify the findface-sf-api host IP address.

sfapi_url = 'http://localhost:18411'

	Enable the findface-facerouter service autostart and launch the service.

sudo systemctl enable findface-facerouter.service && sudo systemctl start findface-facerouter.service

Deploy Video Face Detection

Video face detection is provided by the findface-video-manager and findface-video-worker components.

To deploy the findface-video-manager component, do the following:

	Install findface-video-manager:

sudo apt install -y findface-video-manager

	Open the /etc/findface-video-manager.conf configuration file.

sudo /etc/findface-video-manager.conf

	In the router_url parameter, specify the IP address and port of the findface-facerouter component which will receive detected faces from findface-video-worker.

router_url: http://127.0.0.1:18820/v0/frame

	In the ntls -> url parameter, specify the IP address of the findface-ntls host if findface-ntls is installed on a remote host.

ntls:
 url: http://127.0.0.1:3185/

	If necessary, configure the video processing settings which are applicable to all video streams in the system.

Tip

You can skip this step: when creating a job for findface-video-manager, you will be able to individually configure processing settings for each video stream (see Video Face Detection API).

	Enable the findface-video-manager service autostart and launch the service.

sudo systemctl enable findface-video-manager.service && sudo systemctl start findface-video-manager.service

To deploy the findface-video-worker component, do the following:

	Install findface-video-worker:

sudo apt update
sudo apt install -y findface-video-worker

Note

To install the GPU-accelerated findface-video-worker component, use findface-video-worker-gpu in the command. If you have several video cards on your server, see Configure Multiple Video Cards Usage.

	Open the /etc/findface-video-worker.ini (/etc/findface-video-worker-gpu.ini) configuration file.

sudo vi /etc/findface-video-worker.ini
sudo vi /etc/findface-video-worker-gpu.ini

	In the ntls-addr parameter, specify the IP address of the findface-ntls host if findface-ntls is installed on a remote host.

ntls-addr=127.0.0.1:3133

	In the mgr-static parameter, specify the IP address of the findface-video-manager host that will be providing findface-video-worker with settings and the list of to-be-processed video streams.

mgr-static=127.0.0.1:18811

	In the capacity parameter, specify the maximum number of video streams that findface-video-worker is allowed to process.

capacity=10

	Enable the findface-video-worker autostart and launch the service.

sudo systemctl enable findface-video-worker.service && sudo systemctl start findface-video-worker.service

Additional findface-video-worker deployment on remote hosts

To install only the findface-video-worker service, do the following:

Tip

Be sure to consult the system requirements prior.

Tip

If you have several video cards on your server, see Configure Multiple Video Cards Usage before deploying findface-video-worker-gpu.

	Download the installer file findface-security-2.1.0-server-3.1.0.run.

	Put the .run file into some directory on the designated host (for example, /home/username).

	From this directory, make the .run file executable.

chmod +x findface-security-2.1.0-server-3.1.0.run

	Execute the .run file.

sudo ./findface-security-2.1.0-server-3.1.0.run

The installer will ask you a few questions and perform several automated checks to ensure that the host meets the system requirements. Fill out the prompts appropriately once requested. The questions are the following:

	Product to install: FindFace Video Worker.

	Type of findface-video-worker package: CPU or GPU.

	IP address of the FindFace Enterprise Server host.

After that, the installation process will automatically begin.

Note

The answers will be saved to a file /tmp/<findface-installer-*>.json. You can edit this file and use it to install FindFace Enterprise Server on other hosts without having to answer the questions again. See Installation File for details.

Note

If you chose to install findface-ntls and/or findface-video-manager on different hosts than that with findface-sf-api, specify their IP addresses in the /etc/findface-video-worker.ini configuration file after the installation.

sudo vi /etc/findface-video-worker.ini

In the ntls-addr parameter, specify the findface-ntls host IP address.

ntls-addr=127.0.0.1:3133

In the mgr-static parameter, specify the findface-video-manager host IP address, which provides findface-video-worker with settings and the video stream list.

mgr-static=127.0.0.1:18811

Neural Network Models Installation

To detect and identify faces and face features (gender, age, emotions, beard, glasses, etc.), findface-extraction-api needs neural networks.

The neural networks models are automatically installed only if you opt for the FindFace Enterprise Server standalone installation from installer. In all other cases, you have to manually initiate the models installation. If you have installed the apt repository from installer, install the models from installer as follows:

	Execute the prepared findface-security-2.1.0-server-3.1.0.run file.

sudo ./findface-security-2.1.0-server-3.1.0.run

	Select a component to install: findface-data.

	Select models to install. After that, the installation process will automatically begin.

Note

You can find installed face recognition models at /usr/share/findface-data/models/face/, face features recognition models at /usr/share/findface-data/models/faceattr/.

ls /usr/share/findface-data/models/face/
elderberry_160.cpu.fnk elderberry_160.gpu.fnk elderberry_576.cpu.fnk elderberry_576.gpu.fnk

ls /usr/share/findface-data/models/faceattr/
age.v1.cpu.fnk age.v1.gpu.fnk beard.v0.cpu.fnk beard.v0.gpu.fnk emotions.v1.cpu.fnk emotions.v1.gpu.fnk gender.v2.cpu.fnk gender.v2.gpu.fnk glasses3.v0.cpu.fnk glasses3.v0.gpu.fnk liveness.v1.gpu.fnk

Test Requests

Before you can proceed with development to implement the face recognition services to your system, make sure that the FindFace Server components are working. To do so, run the test requests below, minding the sequence. To pretty-print responses, we recommend you to use jq.

In this section:

	How to Pretty-Print Responses

	Create Gallery

	List Galleries

	Detect Face in Image

	Retrieve Detection Result from memcached

	Add Face from memcached to Gallery

	List Gallery Faces

	Search Face in Gallery

	Compare Faces

How to Pretty-Print Responses

Use jq to parse JSON data in responses. The jq tool is automatically installed from the console installer.

Tip

If it is not so, install jq as such:

sudo apt install jq

Note

Since jq approximates integers larger than 2^53 (e.g., for "id":12107867323949968228, the output is "id": 12107867323949967000, etc.), you may want to use json_pp instead.

Create Gallery

The following request creates a new gallery galleryname. Relevant HTTP API method: /galleries/<gallery> POST.

Request

curl -s -X POST http://localhost:18411/v2/galleries/galleryname | jq

Response

{}

List Galleries

The following request returns the names of existing galleries (galleryname). Relevant HTTP API method: /galleries GET.

Request

curl -s http://localhost:18411/v2/galleries | jq

Response

{
 "galleries": [
 {
 "name": "galleryname",
 "faces": 0
 }
]
}

Detect Face in Image

The 1st request detects a face in a sample Internet image and returns coordinates of the rectangle around the face (a.k.a. bbox) and the face orientation. Relevant HTTP API method: /detect POST.

Request #1

curl -s -H 'Content-Type: text/x-url' -d https://static.findface.pro/sample.jpg -X POST http://localhost:18411/v2/detect | jq

Response

{
 "faces": [
 {
 "bbox": {
 "left": 595,
 "top": 127,
 "right": 812,
 "bottom": 344
 },
 "features": {
 "score": 0.9999999
 }
 }
],
 "orientation": 1
}

If facen=on, the detection result is saved in memcached. In the 2nd request, the image is the same, but this time facen=on, along with enabled gender, age and emotions recognition.

Tip

To retrieve the detection result from memcached, use the /detect GET method.

Request #2

curl -s -H 'Content-Type: text/x-url' -d https://static.findface.pro/sample.jpg -X POST 'http://localhost:18411/v2/detect?facen=on&gender=on&age=on&emotions=on' | jq

Response

{
 "faces": [
 {
 "id": "bhse5elubdg0ajgm2nkg",
 "bbox": {
 "left": 595,
 "top": 127,
 "right": 812,
 "bottom": 344
 },
 "features": {
 "gender": {
 "gender": "FEMALE",
 "score": -2.6415923
 },
 "age": 26.04833,
 "score": 0.9999999,
 "emotions": [
 {
 "emotion": "neutral",
 "score": 0.99958
 },
 {
 "emotion": "sad",
 "score": 0.0004020398
 },
 {
 "emotion": "happy",
 "score": 8.603504e-06
 },
 {
 "emotion": "surprise",
 "score": 8.076798e-06
 },
 {
 "emotion": "disgust",
 "score": 6.653509e-07
 },
 {
 "emotion": "angry",
 "score": 6.14346e-07
 },
 {
 "emotion": "fear",
 "score": 7.33713e-10
 }
]
 }
 }
],
 "orientation": 1
}

The 3rd request detects a face in another image and is used merely for the purpose of database population. The detection result is saved in memcached (facen=on).

Request #3

curl -s -H 'Content-Type: text/x-url' -d https://static.findface.pro/sample2.jpg -X POST 'http://localhost:18411/v2/detect?facen=on

{
 "faces": [
 {
 "id": "bhse45dubdg0ajgm2nk0",
 "bbox": {
 "left": 515,
 "top": 121,
 "right": 821,
 "bottom": 427
 },
 "features": {
 "score": 0.9999982
 }
 }
],
 "orientation": 1
}

Retrieve Detection Result from memcached

The following request retrieves the detection result from memcached by id. Related HTTP API method: /detect GET.

Note

bhse5elubdg0ajgm2nkg is the id of the detection results in memcached. This id is provided only for reference. To create valid requests out of the example below, replace the id in the message with those actually received in the previous responses.

Request #1

curl -s 'http://localhost:18411/v2/detect/bhse5elubdg0ajgm2nkg'

Response

{
 "id": "bhse5elubdg0ajgm2nkg",
 "bbox": {
 "left": 595,
 "top": 127,
 "right": 812,
 "bottom": 344
 },
 "features": {
 "score": 0.9999999
 }
}

To retrieve a face feature vector (facen) in a detection result, open the /etc/findface-sf-api.ini configuration file and set allow-return-facen: true. Restart findface-sf-api and append the return_facen=on query string parameter to the previous command:

Request #2

curl -s 'http://localhost:18411/v2/detect/bhse5elubdg0ajgm2nkg?return_facen=on' | jq

Response

{
 "id": "bhse5elubdg0ajgm2nkg",
 "bbox": {
 "left": 595,
 "top": 127,
 "right": 812,
 "bottom": 344
 },
 "features": {
 "score": 0.9999999
 },
 "facen": "1ji...Vr3TEQg8"
}

Add Face from memcached to Gallery

The following requests not only retrieve the detection results from memcached by their id’s, but also add the results to the gallery galleryname under different custom ids (to be specified in a request). Relevant HTTP API method: /v2/galleries/<gal>/faces/<id>.

Request #1

curl -s -X POST -H 'Content-Type: application/json' --data '{"from":"detection:bd2blott8f63g8nbhi50"}' http://localhost:18411/v2/galleries/galleryname/faces/1 | jq

Response

{
 "id": {
 "gallery": "galleryname",
 "face": 1
 },
 "features": {
 "gender": {
 "gender": "FEMALE",
 "score": -2.6415923
 },
 "age": 26.04833,
 "score": 0.9999999,
 "emotions": [
 {
 "emotion": "neutral",
 "score": 0.99958
 },
 {
 "emotion": "sad",
 "score": 0.0004020398
 },
 {
 "emotion": "happy",
 "score": 8.603504e-06
 },
 {
 "emotion": "surprise",
 "score": 8.076798e-06
 },
 {
 "emotion": "disgust",
 "score": 6.653509e-07
 },
 {
 "emotion": "angry",
 "score": 6.14346e-07
 },
 {
 "emotion": "fear",
 "score": 7.33713e-10
 }
]
 },
 "meta": {},
 "normalized_id": "3_bd323i5t8f66ph0eafq0.png"
}

Request #2

curl -s -X POST -H 'Content-Type: application/json' --data '{"from":"detection: bd44p6dt8f66ph0eahkg "}' http://localhost:18411/v2/galleries/galleryname/faces/2 | jq

List Gallery Faces

The following request returns the list of faces in the gallery galleryname. Relevant HTTP API method: /galleries/<gallery>/faces with the active limit= filter (maximum number of returned faces).

Request

curl -s 'http://localhost:18411/v2/galleries/galleryname/faces?limit=2' | jq

{
 "faces": [
 {
 "id": {
 "gallery": "galleryname",
 "face": 1
 },
 "features": {
 "gender": {
 "gender": "FEMALE",
 "score": -2.6415923
 },
 "age": 26.04833,
 "score": 0.9999999,
 "emotions": [
 {
 "emotion": "neutral",
 "score": 0.99958
 },
 {
 "emotion": "sad",
 "score": 0.0004020398
 },
 {
 "emotion": "happy",
 "score": 8.603504e-06
 },
 {
 "emotion": "surprise",
 "score": 8.076798e-06
 },
 {
 "emotion": "disgust",
 "score": 6.653509e-07
 },
 {
 "emotion": "angry",
 "score": 6.14346e-07
 },
 {
 "emotion": "fear",
 "score": 7.33713e-10
 }
]
 },
 "meta": {},
 "normalized_id": "1_bd321tlt8f66ph0eaflg.png"
 },
 {
 "id": {
 "gallery": "galleryname",
 "face": 2
 },
 "features": {
 "gender": {
 "gender": "FEMALE",
 "score": -2.6415923
 },
 "age": 26.04833,
 "score": 0.9999999,
 "emotions": [
 {
 "emotion": "neutral",
 "score": 0.99958
 },
 {
 "emotion": "sad",
 "score": 0.0004020398
 },
 {
 "emotion": "happy",
 "score": 8.603504e-06
 },
 {
 "emotion": "surprise",
 "score": 8.076798e-06
 },
 {
 "emotion": "disgust",
 "score": 6.653509e-07
 },
 {
 "emotion": "angry",
 "score": 6.14346e-07
 },
 {
 "emotion": "fear",
 "score": 7.33713e-10
 }
]
 },
 "meta": {},
 "normalized_id": "2_bd323f5t8f66ph0eafp0.png"
 }
],
 "next_page": "3"
}

Search Face in Gallery

The following request searches the gallery galleryname for faces similar to a detected face (detection result stored in memcached) with threshold similarity equal to 0.5. Relevant HTTP API request: /galleries/<gallery>/faces with enabled detection:id and similarity filters.

Request

curl -s 'http://localhost:18411/v2/galleries/galleryname/faces?detection:bd3hv4tt8f66ph0eag1g=0.5&limit=1' | jq

Response

{
 "faces": [
 {
 "id": {
 "gallery": "galleryname",
 "face": 2
 },
 "features": {
 "gender": {
 "gender": "FEMALE",
 "score": -2.6415923
 },
 "age": 26.04833,
 "score": 0.9999999,
 "emotions": [
 {
 "emotion": "neutral",
 "score": 0.99958
 },
 {
 "emotion": "sad",
 "score": 0.0004020398
 },
 {
 "emotion": "happy",
 "score": 8.603504e-06
 },
 {
 "emotion": "surprise",
 "score": 8.076798e-06
 },
 {
 "emotion": "disgust",
 "score": 6.653509e-07
 },
 {
 "emotion": "angry",
 "score": 6.14346e-07
 },
 {
 "emotion": "fear",
 "score": 7.33713e-10
 }
]
 },
 "meta": {},
 "normalized_id": "2_bd323f5t8f66ph0eafp0.png",
 "confidence": 0.9999
 }
],
 "next_page": "There are more than 1 results, but pagination is not supported when filtering by FaceN"
}

The following request searches the gallery galleryname for faces similar to a given face in the same gallery with threshold similarity equal to 0.5. Relevant HTTP API request: /galleries/<gallery>/faces with enabled face:<gallery>/<db_id> and similarity filters.

curl -s 'http://localhost:18411/v2/galleries/galleryname/faces?face:galleryname/1=0.1&limit=1' | jq

{
 "faces": [
 {
 "id": {
 "gallery": "galleryname",
 "face": 2
 },
 "features": null,
 "meta": {},
 "confidence": 0.999
 }
],
 "next_page": "There are more than 1 results, but pagination is not supported when filtering by FaceN"
}

Compare Faces

The following requests compare a pair of faces and return a probability of their belonging to the same person. Relevant HTTP API method: /verify POST.

The first request compares 2 results of the /detect POST method, stored in memcached.

Request #1

curl -s 'http://localhost:18411/v2/verify?face1=detection:bd3hv4tt8f66ph0eag1g&face2=detection:bd3hv8dt8f66ph0eag2g' | jq

Response

{
 "confidence": 0.92764723
}

The 2nd request compares a result of the /detect POST method and a face in a gallery.

Request

curl -s 'http://localhost:18411/v2/verify?face1=detection:bd3hv4tt8f66ph0eag1g&face2=face:galleryname/2' | jq

Response

{
 "confidence": 0.999996
}

Fast Index

To speed up search, create a fast index for each gallery, using the findface-tarantool-build-index utility. This utility is installed from the distributable package <findface-repo>.deb or automatically from the console installer, subject to your installation method. It is independent of the findface-tarantool-server component and can be installed either on a localhost or on a remote host with access to Tarantool.

To create the fast index, do the following:

	 (If you have installed the FindFace core step-by-step) Install the findface-tarantool-build-index utility.

sudo apt install findface-tarantool-build-index

	Create the fast index for your gallery (testgal in the case-study). First, connect to the Tarantool console.

Note

You have to repeat the fast index creation on each findface-tarantool-server shard.

tarantoolctl connect 127.0.0.1:33001

	Run prepare_preindex. Each element of the gallery will be moved from the linear space to preindex:

127.0.0.1:33001> FindFace.Gallery.new("testgal"):prepare_preindex()

...

	Prepare a file for generating the index:

127.0.0.1:33001> FindFace.Gallery.new("testgal"):save_preindex("/tmp/preindex.bin")

...

	Launch index generation with the findface-tarantool-build-index utility (see --help for additional options). Depending on the number of elements, this process can take up to several hours and can be done on a separate, more powerful machine (for huge galleries we recommend c4.8xlarge amazon, for example, spot-instance).

findface-build-index --input /tmp/preindex.bin --output /opt/ntech/var/lib/tarantool/default/index/testgal.idx --facen_size 320
Config values:
.input = /tmp/preindex.bin
.output = /opt/ntech/var/lib/tarantool/default/index/testgal.idx
.facen_size = 320
.param_m = 12
.param_ef = 500
.limit = 4294967295

Building index: [XX] 100% ; 3 / 3
Index saved at /opt/ntech/var/lib/tarantool/default/index/testgal.idx

	Delete the preindex.bin file.

sudo rm /tmp/preindex.bin

	Enable the fast index for the gallery.

Note

If Tarantool works as a replica set, copy the index file (.idx) from the master instance to the same path on the replica before enabling the fast index for the master instance (:use_index).

Tip

Do not forget to remove obsolete index files on the replica in order to avoid unnecessary index transitions, should the master instance and replica be heavily out of sync.

127.0.0.1:33001> FindFace.Gallery.new("testgal"):preindex_to_index()

...
127.0.0.1:33001> FindFace.Gallery.new("testgal"):use_index("/opt/ntech/var/lib/tarantool/default/index/testgal.idx")

...

	Search through the gallery should now be significantly faster. Information about the index remains in the service space, so when you restart Tarantool, index will also be uploaded.

Warning

Do not move the index file to another location!

Biometric API

In this section:

	How to Use Biometric API

	Biometric API Methods

Tip

You can also find the biometric API documentation on our website [https://api.findface.pro/v2/docs/v2/overview.html] and at http://<findface-sf-api_ip>:18411/v2/docs.

How to Use Biometric API

In this section:

	Endpoint

	API Version

	Face as API Object

	Parameters Format

	How to Use Examples

	Limits

	Error Reporting

Endpoint

Biometric API requests are to be sent to http://<findface-sf-api IP address>:18411/. API requests are executed by the findface-sf-api component.

API Version

The API version is increased every time a major change is made and allows us to avoid breaking backwards compatibility. The API version is to be specified in the request path (for example, v2 in /v2/detect/).

The most recent version is v2.

Tip

When starting a new project, always use the latest stable API version.

Face as API Object

Biometric API operates with a face object which represents a human face.

Note

There can be several faces in a photo and thus several face objects associated with it.

Note

Different images of the same person are considered to be different face objects.

Each face object has the following attributes:

	"id" (uint64): (only if the face has been added to the biometric database) face identifier (uint64) to be specified by a user in an API request when adding a face from memcached to the database. The identifier is passed as <id> in the /galleries/<gallery>/faces/<id> POST method.

	"facen" (bytes): the face feature vector.

	"meta" (string): set of metadata strings that you can use to store any information associated with the face, for example, the name of a person, the camera id, the detection date and time, etc.

	"features" (dictionary): a dictionary {key (string):value (any datatype)}. Used to store face biometric parameters such as gender, age, emotions.

Parameters Format

There are two ways to pass a photo image to the system:

	as a publicly accessible URL,

	as a file.

There are three ways to pass parameters to the biometric API:

	image/jpeg, image/png, image/webp, image/bmp: to pass a photo image as a file,

	text/x-url: to pass a photo image as an URL,

	query string: parameters appended to a URI request.

All responses are in JSON format and UTF-8 encoding.

How to Use Examples

Examples in methods descriptions illustrate possible method requests and responses. To check the examples without writing code, use the
embedded API framework. To access the framework, enter in the address bar of your browser: http://<findface-sf-api_ip>:18411/v2/docs/v2/overview.html for the API version /v2.

Limits

FindFace Enterprise Server imposes the following limits.

	Limit

	Value

	Image formats

	JPG, PNG, WEBP, BMP

	Maximum photo file size

	To be configured via the findface-sf-api configuration
file.

	Minimal size of a face

	50x50 pixels

	Maximum number of detected faces per photo

	Unlimited

Important

Additionally, the URL provided to the API to fetch an image must be public (without authentication) and direct (without any redirects).

Error Reporting

If a method fails, it always returns a response with a HTTP code other than 200, and a JSON body containing the error description. The error body always includes at least two fields: code and status.

	code is a short string in CAPS_AND_UNDERSCORES, usable for automatic decoding.

	reason is a human-readable description of the error and should not be interpreted automatically.

Common Error Codes

	Error code

	Description

	HTTP code

	UNKNOWN_ERROR

	Error with unknown origin.

	500

	BAD_PARAM

	The request can be read, however, some method parameters are invalid. This response type
contains additional attributes param and``value`` to indicate which parameters are invalid.

	400

	CONFLICT

	Conflict.

	409

	EXTRACTION_ERROR

	Error upon a face feature vector extraction.

	503

	LICENSE_ERROR

	The system configuration does not match license.

	503

	MALFORMED_REQUEST

	The request is malformed and cannot be read.

	400

	OVER_CAPACITY

	The findface-extraction-api queue length has been exceeded.

	429

	SOURCE_NOT_FOUND

	The face in the from parameter does not exist.

	400

	SOURCE_GALLERY_NOT_FOUND

	The gallery in the from parameter does not exist.

	400

	STORAGE_ERROR

	The biometric database not available.

	503

	CACHE_ERROR

	Memcached not available.

	503

	NOT_FOUND

	Matching faces not found.

	404

	NOT_IMPLEMENTED

	This functionality not implemented.

	501

	GALLERY_NOT_FOUND

	Matching galleries not found.

	404

Biometric API Methods

In this section:

	Detect Face in Image

	Retrieve Detection Result from memcached

	Create Detection Result out of findface-extraction-api Response

	List Database Galleries

	Create Database Gallery

	Retrieve Gallery Details

	Delete Gallery

	Add Face from memcached to Database

	Retrieve Face from Gallery

	Delete Face from Gallery

	Update Face Metadata in Gallery

	Compare Faces

	Retrieve Data from Gallery. Face Search

Detect Face in Image

/detect POST

This method detects a face in a provided image and returns coordinates of the rectangle around the face (a.k.a. bbox) and the face orientation.

Note

Face detection is done by the findface-extraction-api component, so the findface-sf-api component formats your initial request and forwards it to findface-extraction-api.

Important

Be sure to pass the enabled facen parameter in the /detect POST query string in order to save the returned result in memcached. To retrieve the returned result from memcached, use the /detect GET method.

Tip

To enable a boolean parameter (gender, age, etc.), use any of the following strings: 1, yes, true, or on, in any letter case.

Important

To enable recognition of face features, you can use either the new (preferred) or old API parameters (see the query string parameters for details). The old API allows you to recognize gender, age, emotions, and country, while the new API provides recognition of gender, age, emotions, country, beard, and glasses. Each face feature (gender, age, emotions, country, beard, or glasses) must be mentioned only once in a request, either in the new or old API format.

Query string parameters:

	"detector": string, face detector to be applied to the image: nnd (regular detector) or normalized (accepts a normalized face image, skipping the face detection stage).

	"gender": Boolean, enables gender recognition (old API).

	"age": Boolean, enables age recognition (old API).

	"emotions": Boolean, enables emotions recognition (old API).

	"facen": Boolean, the formatted request to findface-extraction-api will include such parameters as need_facen (extract a face feature vector) and need_normalized (obtain a normalized face image), while the full findface-extraction-api response will be saved in memcached under a temporary UUID. You can find this UUID in the id field of the response.

	"countries47:: Boolean, enables country recognition (old API).

	"autorotate": Boolean, auto-rotates an original image to 4 different orientations and returns faces detected in each orientation.

	"return_facen": Boolean, returns a face feature vector in the response. Requires the enabled allow-return-facen flag in the findface-sf-api configuration file.

	"attributes": Array of strings in the format ["gender", "age", "emotions", "countries47", "beard", "glasses3"], enables recognition of the face features passed in the array (new API).

Parameters in request body:

Image as a file of the image/jpeg, image/png, or image/webp MIME-type, or as a text/x-url link to a relevant public URL.

Returns:

	list of coordinates of the rectangles around the detected faces;

	temporary UUID of the detection result (id, if facen enabled);

Important

When writing code, be sure to check the relevance of the temporary UUID before you refer to it as it tends to become irrelevant with time. If so, re-detect the face.

	feature vector (if return_facen enabled);

	gender (if gender enabled): male or female, with algorithm confidence in the result ("score");

	age (if age enabled): number of years;

	emotions (if emotions enabled): 6 basic emotions + neutral (angry, disgust, fear, happy, sad, surprise, neutral) with algorithm confidence in each emotion expression;

	countries (if countries47 enabled): probable countries of origin with algorithm confidence in the result;

	attributes (if passed): gender (male or female), age (number of years), emotions (predominant emotion), probable countries of origin, beard (beard or none), glasses (sun, eye, or none), along with algorithm confidence in the result;

	orientation.

Example

Request

curl -i -X POST 'http://127.0.0.1:18411/v2/detect?facen=on&gender=on&age=on&emotions=on&attribute=glasses3' -H 'Content-Type: image/jpeg' --data-binary @sample.jpg
HTTP/1.1 100 Continue

Response

HTTP/1.1 200 OK
Content-Type: application/json
X-Request-Id: SF:BpLnfgDs
Date: Thu, 23 May 2019 12:00:22 GMT
Content-Length: 713

{
 "faces": [
 {
 "id": "bjj8mlhjisgjrk6hj1v0",
 "bbox": { "left": 595, "top": 127, "right": 812, "bottom": 344 },
 "features": {
 "gender": { "gender": "FEMALE", "score": 0.9998938 },
 "age": 25,
 "score": -0.000696103,
 "emotions": [
 { "emotion": "neutral", "score": 0.99958 },
 { "emotion": "sad", "score": 0.0004020365 },
 { "emotion": "happy", "score": 8.603454e-06 },
 { "emotion": "surprise", "score": 8.076766e-06 },
 { "emotion": "disgust", "score": 6.6535216e-07 },
 { "emotion": "angry", "score": 6.1434775e-07 },
 { "emotion": "fear", "score": 7.3372125e-10 }
],
 "attributes": {
 "glasses3": {
 "attribute": "glasses3",
 "model": "glasses3.v0",
 "result": [
 { "confidence": 0.99958307, "name": "none" },
 { "confidence": 0.00033243417, "name": "eye" },
 { "confidence": 8.4465064e-05, "name": "sun" }
]
 }
 }
 }
 }
],
 "orientation": 1
}

Retrieve Detection Result from memcached

/detect/:id GET

This method retrieves the detection results from memcached by their temporary UUID’s (including feature vectors of the detected faces).

Parameters in path segments:

	:id: the detection result temporary UUID in memcached.

Returns:

JSON representation of the detection result.

Example

Request

curl -i -X GET 'http://127.0.0.1:18411/v2/detect/bg2gu31jisghl6pee09g'

Response:

{
 "bbox": { "bottom": 343, "left": 593, "right": 824, "top": 112 },
 "features": {
 "age": 26.096783,
 "emotions": [
 { "emotion": "neutral", "score": 0.9094986 },
 { "emotion": "happy", "score": 0.11464329 },
 { "emotion": "sad", "score": 0.005675929 },
 { "emotion": "surprise", "score": -0.02556022 },
 { "emotion": "fear", "score": -0.14499822 },
 { "emotion": "angry", "score": -0.19491306 },
 { "emotion": "disgust", "score": -0.31617728 }
],
 "gender": { "gender": "FEMALE", "score": -2.7309942 },
 "score": -0.000696103
 },
 "id": "bg2gu31jisghl6pee09g"
}

Create Detection Result out of findface-extraction-api Response

/detect/:id POST

This method creates a detection result out of a findface-extraction-api response.

Parameters in path segments:

	:id: specify UUID under which the newly created detection result will be stored in cache.

Returns:

Empty JSON on success.

Example

Request

$ curl -i -X POST 'http://127.0.0.1:18411/v2/detect/bg2gu31jisghl6peea9g' -H 'Content-Type: application/json' --data-binary '@extapi-face.json'

Response:

HTTP/1.1 200 OK
Content-Type: application/json
X-Request-Id: jFSBuSPm
Date: Wed, 05 Dec 2018 08:08:56 GMT
Content-Length: 2

{}

List Database Galleries

/galleries GET

This method returns the list of all galleries in the biometric database.

Parameters:

The method doesn’t accept any parameters.

Returns:

JSON dictionary with the list of gallery names.

Example

Request

GET /v2/galleries HTTP/1.1
Host: 172.17.47.19:18411

Response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Date: Fri, 02 Feb 2018 10:11:43 GMT
Content-Length: 35

{"galleries":[{"name":"sandbox"}]}

Create Database Gallery

/galleries/:gallery POST

This method creates a gallery under a given name.

Parameters in path segments:

:gallery: a new gallery’s name. It can contain English letters, numbers, underscore and minus sign ([a-zA-Z0-9_-]+) and must be no longer than 48 characters.

Returns:

	Empty JSON on success.

	JSON with a relevant error description on failure.

Example

Request

POST /v2/galleries/newone HTTP/1.1
Host: 172.17.47.19:18411

Response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Date: Fri, 02 Feb 2018 10:18:01 GMT
Content-Length: 2

{}

Retrieve Gallery Details

/galleries/:gallery GET

This method checks a gallery existence and retrieves the number of faces in it.

Parameters in path segments:

:gallery: a gallery’s name.

Returns:

	JSON dictionary with the number of faces and gallery name on success.

	JSON with a relevant error description on failure.

Example

Request

curl -i -X GET 'http://127.0.0.1:18411/v2/galleries/hello'

Response

HTTP/1.1 200 OK
Content-Type: application/json
X-Request-Id: Ard3exjn
Date: Wed, 05 Dec 2018 08:17:54 GMT
Content-Length: 29

{ "faces": 123, "name": "hello" }

Delete Gallery

/galleries/:gallery DELETE

This method deletes a given gallery with all the faces.

Parameters in path segments:

:gallery: the name of the gallery to be deleted.

Returns:

	Empty JSON on success.

	JSON with a relevant error description on failure.

Example

Request

DELETE /v2/galleries/newone HTTP/1.1
Host: 172.17.47.19:18411

Response

HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
Date: Fri, 02 Feb 2018 10:18:01 GMT
Content-Length: 2

{}

Add Face from memcached to Database

/galleries/:gallery/faces/:id POST

This method not only retrieves a detected face (a result of the /detect POST method) from memcached by its temporary UUID but also adds the face along with its feature vector to a database gallery under a custom id. The custom id and database gallery are to be specified in the path segments. Along with the face, you can also add metadata which describe the person in a unique way, for example, the person’s name.

Parameters in path segments:

	:gallery: the name of the gallery to add the face in.

	:id: permanent face id in the gallery, uint64.

Parameters in request body:

	"from": temporary UUID of the detected face in memcached,

	"meta" [optional]: the person’s metadata such as the person’s name, original image details, detection date and time, etc., dictionary.

Returns:

	JSON representation of the added face on success.

	Error on failure.

Example

Request

curl -i -X POST http://127.0.0.1:18411/v2/galleries/hello/faces/123/ -H 'Content-Type: application/json' --data-binary '@-' <<EOF
{
 "from": "detection:bg2gu31jisghl6pee09g",
 "meta": {
 "camera": "openspace",
 "labels": ["foo", "bar"],
 "timestamp": "1543837276"
 }
}
EOF

Response

HTTP/1.1 200 OK
Content-Type: application/json
X-Request-Id: SF:OSSKbJg3
Date: Wed, 05 Dec 2018 08:27:59 GMT
Content-Length: 555

{
 "features": {
 "age": 26.096783,
 "emotions": [
 { "emotion": "neutral", "score": 0.9094986 },
 { "emotion": "happy", "score": 0.11464329 },
 { "emotion": "sad", "score": 0.005675929 },
 { "emotion": "surprise", "score": -0.02556022 },
 { "emotion": "fear", "score": -0.14499822 },
 { "emotion": "angry", "score": -0.19491306 },
 { "emotion": "disgust", "score": -0.31617728 }
],
 "gender": { "gender": "FEMALE", "score": -2.7309942 },
 "score": -0.000696103
 },
 "id": { "face": 123, "gallery": "hello" },
 "meta": {
 "camera": "openspace",
 "labels": ["foo", "bar"],
 "timestamp": "1543837276"
 },
 "normalized_id": "123_bg2hcupjisghl6pee0ag.png"
}

Retrieve Face from Gallery

/galleries/:gallery/faces/:id GET

This method retrieves a face from a database gallery by id.

Parameters in path segments:

	:gallery: the name of the gallery to retrieve the face from.

	:id: face id in the gallery, uint64.

Returns:

	JSON representation of the retrieved face on success.

	Error on failure.

Example

Request

curl -s 'http://172.17.47.19:18411/v2/galleries/galleryname/faces/2' | jq

Response

{
 "id": {
 "gallery": "galleryname",
 "face": 2
 },
 "features": {
 "gender": {
 "gender": "FEMALE",
 "score": -2.6415923
 },
 "age": 26.04833,
 "score": 0.9999999,
 "emotions": [
 {
 "emotion": "neutral",
 "score": 0.99958
 },
 {
 "emotion": "sad",
 "score": 0.0004020398
 },
 {
 "emotion": "happy",
 "score": 8.603504e-06
 },
 {
 "emotion": "surprise",
 "score": 8.076798e-06
 },
 {
 "emotion": "disgust",
 "score": 6.653509e-07
 },
 {
 "emotion": "angry",
 "score": 6.14346e-07
 },
 {
 "emotion": "fear",
 "score": 7.33713e-10
 }
]
 },
 "meta": {
 "timestamp": 2
 },
 "normalized_id": "2_bd323f5t8f66ph0eafp0.png"
}

Delete Face from Gallery

/galleries/:gallery/faces/:id DELETE

This method deletes a face from a database gallery by id.

Parameters in path segments:

	:gallery: the name of the gallery to delete the face from.

	:id: face id in the gallery, uint64.

Returns:

	Empty JSON on success.

	Error on failure.

Example

Request

curl -s -X DELETE 'http://172.17.47.19:18411/v2/galleries/galleryname/faces/1' | jq

Response

{}

Update Face Metadata in Gallery

/galleries/:gallery/faces/:id PATCH

The method updates a face metadata in a database gallery by id.

Parameters in path segments:

	:gallery: the gallery’s name.

	:id: face id in the gallery, uint64.

Parameters in request body

	"meta": dictionary with the face’s new metastrings.

Returns:

	JSON representation of the updated face on success.

	Error on failure.

Example

Request

curl -s -X PATCH -H 'Content-Type: application/json' --data '{"meta":{"timestamp":2}}' 'http://172.17.47.19:18411/v2/galleries/galleryname/faces/2' | jq

Response

{
 "id": {
 "gallery": "galleryname",
 "face": 2
 },
 "features": {
 "gender": {
 "gender": "FEMALE",
 "score": -2.6415923
 },
 "age": 26.04833,
 "score": 0.9999999,
 "emotions": [
 {
 "emotion": "neutral",
 "score": 0.99958
 },
 {
 "emotion": "sad",
 "score": 0.0004020398
 },
 {
 "emotion": "happy",
 "score": 8.603504e-06
 },
 {
 "emotion": "surprise",
 "score": 8.076798e-06
 },
 {
 "emotion": "disgust",
 "score": 6.653509e-07
 },
 {
 "emotion": "angry",
 "score": 6.14346e-07
 },
 {
 "emotion": "fear",
 "score": 7.33713e-10
 }
]
 },
 "meta": {
 "timestamp": 2
 },
 "normalized_id": "2_bd323f5t8f66ph0eafp0.png"
}

Compare Faces

/verify POST

This method compares a pair of faces and returns a probability of their belonging to the same person (a.k.a. similarity, or confidence).

Query string parameters:

	"face1": the first face, either a detection result (a result of the /detect POST method being stored in memcached), or one from the biometric database.

	"face2": the second face, from the same possible sources as the first face.

Returns:

Algorithm confidence that the faces match.

Example

Request #1. Compare 2 detection results

curl -s 'http://172.17.47.19:18411/v2/verify?face1=detection:bd3hv4tt8f66ph0eag1g&face2=detection:bd3hv8dt8f66ph0eag2g' | jq

Response

{
 "confidence": 0.92764723
}

Request #2. Compare a detection result and a face from a gallery

curl -s 'http://172.17.47.19:18411/v2/verify?face1=detection:bd3hv4tt8f66ph0eag1g&face2=face:galleryname/2' | jq

Response

{
 "confidence": 0.999996
}

Retrieve Data from Gallery. Face Search

/v2/galleries/:gallery/faces GET

This method allows you to search faces in a gallery by using filters specified in the query string.

Parameters in path segments:

:gallery: the name of the gallery to search in.

Query string parameters:

	?limit=: (mandatory) maximum number of faces in the response.

	?sort=: sorting order. Pass one of the following values: id: increasing order by id, -id: decreasing order by id, -confidence: decreasing order by face similarity (only if you have specified a feature vector to search for).

	?page=<page>: cursor of the next page with search results. The <page> value is returned in the response in the next_page parameter along with the previous page results (see details below).

	?ignore_errors: By default, if one or several findface-tarantool-server shards are out of service during face identification, findface-sf-api returns an error. Enable this Boolean parameter to use available findface-tarantool-server shards to obtain face identification results.

	?meta:in:meta1=val1&meta:in:meta1=val2&...: select a face if a meta string meta1 is equal to one of the values val1/val2/ …, etc. (uint64, string).

	?meta:gte:meta1=val1: select all faces with a meta string meta1 greater or equal to val1 (uint64).

	?meta:lte:meta1=val1: select all faces with a meta string meta1 less or equal to val1 (uint64).

	?id:in=value_id: select all faces with id equal to value_id.

	?id:gte=value_id: select all faces with id greater or equal to value_id.

	?id:lte=value_id: select all faces with id less or equal to value_id.

	?meta:subset:meta1=val1&meta:subset:meta1=val2&...: select a face if a meta string meta1 includes all the values val1, val2, …, etc. ([]string).

	?<id>=<confidence>: specifies a feature vector to search for in the biometric database, via the <id> parameter, as well as the threshold similarity in the search results as <confidence>. The <id> parameter can be either a face ID in a database gallery (specify <id> as face:<gallery>/<db_id>), or the temporary UUID of a detection result stored in memcached (detection:<memcached_id>) (see the /detect POST method and examples below). The <confidence> ranges from 0 to 1.

Returns:

JSON representation of an array with found faces. By default, faces in the response are sorted by id. Should you specify a feature vector to search for, faces will be sorted in decreasing order by similarity.

The response format is the following:

{
 "faces": [
 {
 ... face 1 data ...
 "confidence": 0.123 // if you search for a feature vector
 },
 {
 ... face 2 data ...
 "confidence": 0.123 // if you search for a feature vector
 },
 ...
],
 "next_page": "vgszk2bkexbl" // next page cursor
}

The next_page parameter is a URL-safe string that you will have to pass in the ?page= in the next request in order to get the next page of results. Pagination is available only if the filtration by feature vector is disabled.

Request #1. Face identification (search a gallery for a face)

curl -s 'http://172.17.47.19:18411/v2/galleries/galleryname/faces?detection:bd3hv4tt8f66ph0eag1g=0.5&limit=1' | jq

Response

{
 "faces": [
 {
 "id": {
 "gallery": "galleryname",
 "face": 2
 },
 "features": {
 "gender": {
 "gender": "FEMALE",
 "score": -2.6415923
 },
 "age": 26.04833,
 "score": 0.9999999,
 "emotions": [
 {
 "emotion": "neutral",
 "score": 0.99958
 },
 {
 "emotion": "sad",
 "score": 0.0004020398
 },
 {
 "emotion": "happy",
 "score": 8.603504e-06
 },
 {
 "emotion": "surprise",
 "score": 8.076798e-06
 },
 {
 "emotion": "disgust",
 "score": 6.653509e-07
 },
 {
 "emotion": "angry",
 "score": 6.14346e-07
 },
 {
 "emotion": "fear",
 "score": 7.33713e-10
 }
]
 },
 "meta": {},
 "normalized_id": "2_bd323f5t8f66ph0eafp0.png",
 "confidence": 0.9999
 }
],
 "next_page": "There are more than 1 results, but pagination is not supported when filtering by FaceN"
}

Request #2. List faces in gallery

curl -s 'http://172.17.47.19:18411/v2/galleries/galleryname/faces?limit=2' | jq

Response

{
 "faces": [
 {
 "id": {
 "gallery": "galleryname",
 "face": 1
 },
 "features": {
 "gender": {
 "gender": "FEMALE",
 "score": -2.6415923
 },
 "age": 26.04833,
 "score": 0.9999999,
 "emotions": [
 {
 "emotion": "neutral",
 "score": 0.99958
 },
 {
 "emotion": "sad",
 "score": 0.0004020398
 },
 {
 "emotion": "happy",
 "score": 8.603504e-06
 },
 {
 "emotion": "surprise",
 "score": 8.076798e-06
 },
 {
 "emotion": "disgust",
 "score": 6.653509e-07
 },
 {
 "emotion": "angry",
 "score": 6.14346e-07
 },
 {
 "emotion": "fear",
 "score": 7.33713e-10
 }
]
 },
 "meta": {},
 "normalized_id": "1_bd321tlt8f66ph0eaflg.png"
 },
 {
 "id": {
 "gallery": "galleryname",
 "face": 2
 },
 "features": {
 "gender": {
 "gender": "FEMALE",
 "score": -2.6415923
 },
 "age": 26.04833,
 "score": 0.9999999,
 "emotions": [
 {
 "emotion": "neutral",
 "score": 0.99958
 },
 {
 "emotion": "sad",
 "score": 0.0004020398
 },
 {
 "emotion": "happy",
 "score": 8.603504e-06
 },
 {
 "emotion": "surprise",
 "score": 8.076798e-06
 },
 {
 "emotion": "disgust",
 "score": 6.653509e-07
 },
 {
 "emotion": "angry",
 "score": 6.14346e-07
 },
 {
 "emotion": "fear",
 "score": 7.33713e-10
 }
]
 },
 "meta": {},
 "normalized_id": "2_bd323f5t8f66ph0eafp0.png"
 }
],
 "next_page": "3"
}

Request #3. Advanced face identification

curl -i -X GET http://127.0.0.1:18411/v2/galleries/history/faces/?limit=5&meta:in:camera=openspace&meta:in:camera=entrance&meta:lte:timestamp=1543845934&meta:gte:timestamp=1514801655&detection:bg2gu31jisghl6pee09g=0.4 | jq

Response

HTTP/1.1 200 OK
Content-Type: application/json
X-Request-Id: SF:ibKVYpcb
Date: Wed, 05 Dec 2018 08:37:33 GMT
Transfer-Encoding: chunked

{
 "faces": [
 {
 "confidence": 0.6026,
 "features": { "score": 1 },
 "id": { "face": 4141715030051545133, "gallery": "history" },
 "meta": {
 "bbox": "[607, 802, 738, 933]",
 "camera": "openspace",
 "is_friend": 0,
 "labels": [],
 "score": 9999999999998079040,
 "timestamp": 1542909082
 },
 "normalized_id": "4141715030051545133_bfrep71jisghl6pedvk0.png"
 },
 {
 "confidence": 0.5325,
 "features": { "score": 1 },
 "id": { "face": 4141715086422990894, "gallery": "history" },
 "meta": {
 "bbox": "[741, 905, 953, 1117]",
 "camera": "openspace",
 "is_friend": 0,
 "labels": [],
 "score": 9999999999993877300,
 "timestamp": 1542909103
 },
 "normalized_id": "4141715086422990894_bfrepc9jisghl6pedvl0.png"
 },
 {
 "confidence": 0.531,
 "features": {
 "age": 41.2622,
 "gender": { "gender": "FEMALE", "score": -0.880698 },
 "score": 1
 },
 "id": { "face": 4141716493024780347, "gallery": "history" },
 "meta": {
 "bbox": "[90, 869, 166, 945]",
 "camera": "openspace",
 "is_friend": 0,
 "labels": [],
 "score": 10000000000000000013,
 "timestamp": 1542909627
 },
 "normalized_id": "4141716493024780347_bfretf9jisghl6pee020.png"
 },
 {
 "confidence": 0.5236,
 "features": {
 "age": 48.949913,
 "gender": { "gender": "FEMALE", "score": -0.7653318 },
 "score": 1
 },
 "id": { "face": 4141716498393489468, "gallery": "history" },
 "meta": {
 "bbox": "[56, 853, 125, 923]",
 "camera": "openspace",
 "is_friend": 0,
 "labels": [],
 "score": 9999999999999999053,
 "timestamp": 1542909629
 },
 "normalized_id": "4141716498393489468_bfretg1jisghl6pee030.png"
 },
 {
 "confidence": 0.5212,
 "features": {
 "age": 33.3112,
 "gender": { "gender": "MALE", "score": 1.9504981 },
 "score": 1
 },
 "id": { "face": 4141715338752319538, "gallery": "history" },
 "meta": {
 "bbox": "[-36, 862, 60, 958]",
 "camera": "openspace",
 "is_friend": 0,
 "labels": [],
 "score": 9999999999999999425,
 "timestamp": 1542909197
 },
 "normalized_id": "4141715338752319538_bfreq4pjisghl6pedvp0.png"
 }
],
 "next_page": "There are more than 5 results, but pagination is not supported when filtering by FaceN"
}

Video Face Detection API

In this section:

	How to Use Video Face Detection API

	Video Face Detection API Methods

Tip

You can also find the video face detection API documentation at http://<findface-video-manager_ip>:18810/docs.

How to Use Video Face Detection API

In this section:

	Endpoint

	Job Object

	Error Reporting

Endpoint

Video face detection API requests are to be sent to http://<findface-video-manager IP address>:18810/. API requests are executed by the findface-video-manager component.

Job Object

Video face detection API operates on a job object which represents a video processing task that the findface-video-manager component issues to findface-video-worker.

Each job object has the following attributes:

	id: job id specified by a user.

	stream_url: URL/address of video stream/file to process.

	labels: tag(s) that will be used by the findface-facerouter component to find processing directives for faces detected in this stream.

	single_pass: if true, disable restarting video processing upon error (by default, false).

	router_url: IP address and port of the findface-facerouter component to receive detected faces from the findface-video-worker component for processing.

	status: job status.

	status_msg: additional job status info.

	statistic: job progress statistics (progress duration, number of posted faces).

	worker_id: id of the findface-video-worker instance executing the job.

Error Reporting

If a method fails, it always returns a response with a HTTP code other than 200, and a JSON body containing the error description. The error body always includes at least two fields: code and status.

	code is a short string in CAPS_AND_UNDERSCORES, usable for automatic decoding.

	reason is a human-readable description of the error and should not be interpreted automatically.

Common Error Codes

	Error code

	Description

	HTTP code

	UNKNOWN_ERROR

	Error with unknown origin.

	500

	BAD_REQUEST

	The request cannot be read, or some method parameters are invalid.

	400

	CONFLICT

	Conflict.

	409

	NOT_FOUND

	Job not found.

	404

	DELETING

	The previously requested job removal is in progress.

	423

Video Face Detection API Methods

In this section:

	Create Job

	List Existing Jobs

	Retrieve Job Parameters

	Delete Job

	Update Job

	Restart Job

Create Job

POST /job/:id

This method creates a video processing task （job） for the findface-video-worker component.

Parameters in path segments

:id: job id

Parameters in request body:

	stream_url: URL/address of a video stream/file to process.

	labels: tag(s) that will be used by the findface-facerouter component to find processing directives for faces detected in this video stream.

	single_pass: if true, disable restarting video processing upon error (by default, false).

	Other video stream parameters that differ from common video stream parameters specified in the findface-video-manager configuration file.

Returns:

A job object: all parameters from the request, as well as some read-only attributes.

Example

Request

curl -s 'http://localhost:18810/job/myid-123' --data '{"stream_url":"http://1.2.3.4/stream.mp4", "labels": {"district": "SVAO"}}' | jq

Response

{
 "id": "myid-123",
 "stream_url": "http://1.2.3.4/stream.mp4",
 "labels": {
 "district": "SVAO"
 },
 "router_url": "http://localhost:1514/",
 "single_pass": false,
 "status": "AWAITING",
 "status_msg": "",
 "statistic": {
 "processed_duration": 0,
 "faces_posted": 0
 },
 "worker_id": ""
}

List Existing Jobs

GET /jobs

This method returns the list of all existing jobs.

Parameters:

This method doesn’t accept any parameters.

Returns:

JSON representation with the list of all jobs.

Example

Request

curl -s 'http://localhost:18810/jobs' | jq

Response

[
 {
 "id": "b9c73bhg74hnekpaa0o0",
 "stream_url": "http://1.2.3.4/stream.mp4",
 "labels": {
 "district": "SVAO"
 },
 "router_url": "http://localhost:1514/",
 "single_pass": false,
 "status": "AWAITING",
 "status_msg": "",
 "worker_id": ""
 },
 {
 "id": "b9c73rhg74hnekpaa0og",
 "stream_url": "http://xxx.ru/stream.mp4",
 "labels": {
 "district": "ZAO"
 },
 "router_url": "http://localhost:1514/",
 "single_pass": false,
 "status": "AWAITING",
 "status_msg": "",
 "worker_id": ""
 }
]

Retrieve Job Parameters

GET /job/:id

This method retrieves a job parameters by id.

Parameters in path segments:

id: job id.

Returns:

JSON representation of the job object.

Example

Request

curl -s 'http://localhost:18810/job/b9c73rhg74hnekpaa0og' | jq

Response

{
 "id": "b9c73rhg74hnekpaa0og",
 "stream_url": "http://xxx.ru/stream.mp4",
 "labels": {
 "district": "ZAO"
 },
 "router_url": "http://localhost:1514/",
 "single_pass": false,
 "status": "AWAITING",
 "status_msg": "",
 "worker_id": ""
}

Delete Job

DELETE /job/:id

This method deletes a job by id.

Parameters in path segments:

id: job id.

Returns:

JSON representation of the deleted job object.

Example

Request

curl -s 'http://localhost:18810/job/myid-123' -X DELETE | jq

Response

{
 "id": "myid-123",
 "stream_url": "http://1.2.3.4/stream.mp4",
 "labels": {
 "district": "SVAO"
 },
 "router_url": "http://myrouter",
 "single_pass": false,
 "status": "DELETED",
 "status_msg": "",
 "statistic": {
 "processed_duration": 0,
 "faces_posted": 0
 },
 "worker_id": "b9kqns1g74hm6mbmhbqg"
}

Update Job

PATCH /job/:id

The method updates a job parameters by id.

Parameters in path segments:

id: job id.

Parameters in request body:

	id: job id.

	stream_url: URL/address of a video stream/file to process.

	labels: tag(s) that will be used by the findface-facerouter component to find processing directives for faces detected in this video stream.

	single_pass: if true, disable restarting video processing upon error (by default, false).

	router_url: IP address and port of the findface-facerouter component to receive detected faces from the findface-video-worker component for processing.

	status: job status.

	status_msg: additional job status info.

	statistic: job progress statistics (progress duration, number of posted faces).

	worker_id: id of the findface-video-worker instance executing the job.

	New values of to-be-modified find-video-manager configuration parameters. These value have priority over those specified in the findface-video-manager configuration file.

Returns:

JSON representation of the updated job object.

Example

Request

curl -s 'http://localhost:18810/job/myid-123' -X PATCH --data '{"router_url":"http://myrouter"}' | jq

{
 "id": "myid-123",
 "stream_url": "http://1.2.3.4/stream.mp4",
 "labels": {
 "district": "SVAO"
 },
 "router_url": "http://myrouter",
 "single_pass": false,
 "status": "INPROGRESS",
 "status_msg": "",
 "statistic": {
 "processed_duration": 0,
 "faces_posted": 0
 },
 "worker_id": "b9kqns1g74hm6mbmhbqg"
}

Restart Job

RESTART /job/:id

This method restarts a job by ID.

Parameters in path segments:

id: job id.

Returns:

HTTP/1.1 200 OK on success.

Example

Request

curl -s -D - -X RESTART http://localhost:18810/job/1

Response

HTTP/1.1 200 OK
Content-Type: application/json
X-Request-Id: VbhV3vC5
Date: Tue, 24 Apr 2018 15:23:19 GMT
Content-Length: 0
З

Set Face Processing Directives

In the course of configuring the system, you have to set directives that determine how the system processes a face after it has been detected in video. To do so, you need to write a Python plugin(s).

Plugins are enabled through the findface-facerouter configuration file. They allow you to configure video face detection outcome individually for each use case.

In this section:

	Configure findface-facerouter to Use Plugins

	Basics

	Classes and Methods

	Examples

Configure findface-facerouter to Use Plugins

To configure findface-facerouter to use plugins, do the following:

	Put a plugin into a directory of your choice. You can distribute a set of plugins across several directories.

	Open the findface-facerouter configuration file.

sudo vi /etc/findface-facerouter.py

Warning

The findface-facerouter.py content must be correct Python code.

	Uncomment the plugins_dirs parameter and specify the comma-separated list of plugin directories.

plugins_dirs = '/etc/findface/plugins/video, /etc/findface/plugins/html'

	Save the configuration file.

Basics

In this section:

	Plugin Architecture

	The preprocess method

	The process method

	The shutdown method

Plugin Architecture

After the findface-video-worker component detects a face, the face is posted to the findface-facerouter component via an HTTP API request. To process this request, each findface-facerouter plugin must export the activate(app, ctx, plugin_name, plugin_source) function.

The activate function has the following parameters:

	app: a tornado.web.Application entity of the findface-facerouter component.

	ctx: data context to be passed to a plugin upon activation.

	plugin_name: the name of the plugin to be activated.

	plugin_source: source object to load the plugin from.

Upon activation, a plugin is passed the following data context:

	request.ctx.sfapi: a set up ntech.sfapi_client.Client instance that can be invoked directly to process the result of video face detection (for example, to create a new gallery, add a face to a gallery, etc.).

	plugins: OrderedDict with all the plugins as (key: plugin name, value: the result returned by the activate function).

	idgen: id generator that can be invoked as ctx.idgen().

The activate(app, ctx, plugin_name, plugin_source) function must return an object with the following methods:

	preprocess,

	process,

	shutdown (optional).

The preprocess method

In this method, a findface-facerouter plugin decides if it is interested in the face received from the findface-video-worker component. If so, it returns a tuple or a list that contains one or several strings 'facen', 'gender', 'age', 'emotions'. This means that it is necessary to extract a biometric sample, recognize gender, age, emotions respectively. If the returned tuple/list is non-empty, the findface-facerouter redirects the face to the findface-sf-api in a /detect POST request with relevant query string parameters (facen=on, gender=on, age=on, emotions=on).

The basic preprocess method to inherit from has the following syntax (see the Plugin class):

	
preprocess(self, request: FrHTTPRequest, labels: typing.Mapping[str, str]) → typing.Tuple[str]

	
	Parameters

	
	FrHTTPRequest (tornado.httpserver.HTTPRequest) – a HTTP API request that includes an extra argument params

	labels (dictionary) – a custom set of a frame labels, which are initially specified in a job parameters for findface-video-worker and then assigned to the frame

The params argument of FrHTTPRequest includes the following fields:

	Parameters

	
	photo (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – JPEG video frame featuring a detected face

	face0 (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – normalized face image

	bbox (list of integers [[x1,y1,x2,y2]], where x1: x coordinate of the top-left corner, y1: y coordinate of the top-left corner, x2: x coordinate of the bottom-right corner, y2: y coordinate of the bottom-right corner) – coordinates of the face region in the video frame

	cam_id (string) – camera id

	timestamp (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – video frame timestamp

	detectorParams (dictionary) – debug information from the video face detector

	bs_type (string) – best face search mode. Available options: overall (the findface-video-worker posts only one snapshot per track, but of the highest quality.), realtime (the findface-video-worker posts the best snapshot within each of consecutive time intervals).

	labels (dictionary) – (duplicates params.labels) a custom set of a frame labels, which are specified in a job parameters for findface-video-worker and then assigned to the frame

The decision about face processing is made based on the data in the request.params, including the custom set of labels, as well as for any other reasons.

The process method

This method is called if the preprocess method returns a non-empty tuple or list (i.e. with ‘facen’, ‘gender’, ‘age’, an/or ‘emotions’ strings). After the findface-sf-api returns a response with the result of face detection (see the /detect POST request) with all the requested face features, the findface-facerouter component calls the process method of the plugin in order to the perform face processing itself.

To process a face, a plugin uses request.ctx.sfapi.

The basic process method to inherit from has the following syntax (see the Plugin class):

	
process(self, request: FrHTTPRequest, photo: bytes, bbox: typing.List[int], event_id: int, detection: DetectFace)

	

The shutdown method

This method is only called before the findface-facerouter shutdown.

The basic shutdown method to inherit from has the following syntax (see the Plugin class):

	
shutdown(self)

	

Classes and Methods

In this section:

	Basic Classes

	Object Classes

	Face Detection and Gallery Management

	Filters for Database Search

	Display Error Messages

Basic Classes

	
class facerouter.plugin.Plugin

	Provides the basic methods for writing a plugin (see Basics). A custom class that wraps a plugin must inherit from the Plugin class.

	
preprocess(self, request: FrHTTPRequest, labels: typing.Mapping[str, str]) → typing.Tuple[str]

	Returns a tuple that contains one or several strings 'facen', 'gender', 'age', 'emotions'. This means that findface-facerouter must request findface-extraction-api to extract a biometric sample, recognize gender, age, emotions respectively.

	Parameters

	
	FrHTTPRequest (tornado.httpserver.HTTPRequest) – a HTTP API request that includes an extra argument params

	labels (dictionary) – a custom set of a frame labels from request.params

	Returns

	one or several strings 'facen', 'gender', 'age', 'emotions'

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

The params argument of FrHTTPRequest includes the following fields:

	Parameters

	
	photo (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – JPEG video frame featuring a detected face

	face0 (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – normalized face image

	bbox (list of integers [[x1,y1,x2,y2]], where x1: x coordinate of the top-left corner, y1: y coordinate of the top-left corner, x2: x coordinate of the bottom-right corner, y2: y coordinate of the bottom-right corner) – coordinates of the face region in the video frame

	cam_id (string) – camera id

	timestamp (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – video frame timestamp

	detectorParams (dictionary) – debug information from the video face detector

	bs_type (string) – best face search mode. Available options: overall (the findface-video-worker posts only one snapshot per track, but of the highest quality.), realtime (the findface-video-worker posts the best snapshot within each of consecutive time intervals).

	labels (dictionary) – (duplicates params.labels) a custom set of a frame labels, which are specified in a job parameters for findface-video-worker and then assigned to the frame

	
process(self, request: FrHTTPRequest, photo: bytes, bbox: typing.List[int], event_id: int, detection: DetectFace)

	Accepts the detected face features.

	Parameters

	
	request (tornado.httpserver.HTTPRequest) – a HTTP API request from findface-video-worker

	photo (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – JPEG video frame featuring a detected face, from request.params

	bbox (list of integers [[x1,y1,x2,y2]], where x1: x coordinate of the top-left corner, y1: y coordinate of the top-left corner, x2: x coordinate of the bottom-right corner, y2: y coordinate of the bottom-right corner) – coordinates of the face region in the video frame, from request.params

	event_id (uint64) – id of the face automatically set by findface -facerouter upon receiving it from findface-video-worker. Can be used as a face custom identifier in the biometric database.

	detection (objects.DetectFace) – detection result received from findface-sf-api, that contains requested face features such as faces, gender, age and emotions.

	Returns

	n/a

	Return type

	n/a

	
shutdown(self)

	This method is invoked before the findface-facerouter shutdown.

	Param

	n/a

	Returns

	n/a

Object Classes

	
class objects.BBox

	Represents coordinates of the rectangle around a face.

	
class objects.DetectFace

	Represents a detection result with the following fields:

	Parameters

	
	id (string) – id of the detection result in memcached

	bbox (objects.Bbox) – coordinates of the rectangle around a face

	features (dictionary) – (optional) information about gender, age and emotions

	
class objects.DetectResponse

	Represents a list of objects.DetectionFace objects with an additional field orientation featuring information about the face EXIF orientation in the image.

	Parameters

	orientation (EXIF orientation) – orientation of a detected face

	
class objects.FaceId(namedtuple('FaceId', ('gallery', 'face')))

	Represents a custom face identifier object in the gallery.

	Parameters

	
	gallery (string) – gallery name

	face (integer) – custom face identifier in the gallery

	
class objects.Face

	Represents a result of database search by biometric sample

	Parameters

	
	id (objects.FaceId) – FaceId object.

	features (dictionary) – information about gender, age and emotions

	meta (dictionary) – face meta data

	confidence (float [https://docs.python.org/3/library/functions.html#float]) – similarity between the biometric sample and a face in the search result

	
class objects.ListResponse

	Represents a list of objects.Face objects (i.e. a list of biometric sample search results) with an additional field next_page featuring the cursor for the next page with search results.

	Parameters

	next_page (string) – cursor for the next page with search results

Face Detection and Gallery Management

	
class ntech.sfapi_client.client.Client

	Represents basic methods to detect faces in images and work with galleries.

	
detect(self, *, url=None, image=None, facen=False, gender=False, age=False, emotions=False, return_facen=False, autorotate=False, detector: str = None, timeout=None) → DetectResponse

	Detects a face and returns the result of detection.

	Parameters

	
	url (URL) – image URL if you pass an image that is publicly accessible on the internet

	image (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – PNG/JPG/WEBP image file is you pass an image as a file

	facen (boolean) – extract a biometric sample from the detected face. To save the detection result in memcached pass facen=True

	gender (boolean) – extract and return information about gender

	age (boolean) – extract and return information about age

	emotions (boolean) – extract and return information about emotions

	return_facen (boolean) – return facen in the method result

	autorotate (boolean) – automatically rotate the image in 4 different orientations to detect faces in each of them. Overlapping detections with IOU > 0.5 will be merged

	detector (boolean) – nnd or normalized. The normalized detector is used to process normalized images, for example, those which are received from fkvideo_worker.

	timeout (number) – FindFace core response timeout, in seconds (if none, the default value is used)

	Returns

	Detection result

	Return type

	DetectorResponse object.

	
gallery(self, name)

	Returns a gallery object sfapi_client.Gallery to refer to it later (for example, to list gallery faces).

	Parameters

	name (string) – gallery name

	Returns

	a gallery object

	Return type

	sfapi_client.Gallery

	
list_galleries(self, timeout=None):

	Returns the list of galleries.

	Parameters

	timeout (number) – FindFace core response timeout, in seconds (if none, the default value is used)

	Returns

	list of galleries with the fields name (a gallery name, string) and number (the number of faces in the gallery, number)

	Return type

	list of GalleryListItem

	
class ntech.sfapi_client.gallery.Gallery

	Provides methods to work with galleries and faces.

	
list(self, *, filters: typing.Iterable[filters.Filter] = None, limit: int = 1000, sort: str = '', page=None, ignore_errors=False, timeout=None) → ListResponse

	Returns a list-like object with faces from the gallery, that match the given filters. The returned list-like object has an additional property next_page which can be used as a value for the page parameter in next requests.

	Parameters

	
	filters (sfapi_client.filters.Filter) – list of filters

	limit (integer) – maximum number of returned faces

	sort – sorting order. Pass one of the following values: id: increasing order by id, -id: decreasing order by id (sorting by id is used if you have NOT specified a feature vector to search for), -confidence: decreasing order by face similarity (only if you have specified a feature vector to search for). By default, the method uses the id order (no feature vector specified), or -confidence (with feature vector).

	sort – string

	page – cursor of the next page with search results. The page value is returned in the response in the next_page parameter along with the previous page results.

	ignore_errors (boolean) – By default, if one or several findface-tarantool-server shards are out of service during face identification, findface-sf-api returns an error. Enable this Boolean parameter to use available findface-tarantool-server shards to obtain face identification results.

	timeout (number) – FindFace core response timeout, in seconds (if none, the default value is used)

	Returns

	list with faces from the gallery, that match the given filters.

	Return type

	ListResponse object

	
add(self, new_id: typing.Union[int, typing.Callable], source: typing.Union[DetectFace, Face, str], *, meta: typing.Dict[str, typing.Union[int, str, typing.List[str]]] = None, regenerate_attempts=None, timeout=None) → Face

	Creates a face in the gallery.

	Parameters

	
	new_id (integer or callable) – custom face identifier (Face ID) in the database gallery. May be a (async) callable which returns the id. To generate id, you can use the ctx.idgen() function delivered with the context.

	source (sfapi_client.DetectFace, sfapi_client.Face, sfapi_client.FaceId, or string) – face source: create a face using another face in the database or a detection result as a source.

	meta (dictionary) – face metadata. Keys must be strings and values must be either ints, strings or lists of strings. Metadata keys and types must be previously specified in the storage (findface-tarantool-server) configuration files.

	regenerate_attempts – number of attempts to regenerate a unique Face ID with the ctx.idgen() function if new_id is callable

	timeout (number) – FindFace core response timeout, in seconds (if none, the default value is used)

	Returns

	representation of the newly created face

	Return type

	Face object

	
delete(self, face: typing.Union[Face, int], timeout=None) → None

	Removes a face from the gallery.

	Parameters

	
	face (sfapi_client.Face, sfapi_client.FaceId or id in integer) – face to be removed

	timeout (number) – FindFace core response timeout, in seconds (if none, the default value is used)

	Returns

	None

	
get(self, face: typing.Union[Face, int], timeout=None) → Face

	Retrieves a face from the gallery.

	Parameters

	
	face (sfapi_client.Face, sfapi_client.FaceId or id in integer) – face to be retrieved

	timeout (number) – FindFace core response timeout, in seconds (if none, the default value is used)

	Returns

	representation of the face

	Return type

	Face object

	
create(self, timeout=None) → None

	Creates a gallery in findface-sf-api as a sfapi_client.Gallery object. Being a proxy object, sfapi_client.Gallery doesn’t require a gallery to be existing on the server.

	Parameters

	timeout (number) – FindFace core response timeout, in seconds (if none, the default value is used)

	Returns

	None

	
drop(self, timeout=None) → None:

	Removes a gallery from findface-sf-api.

	Parameters

	timeout (number) – FindFace core response timeout, in seconds (if none, the default value is used)

	Returns

	None

	
update(self, face: typing.Union[Face, str], *, meta: typing.Dict[str, typing.Union[int, str, typing.List[str]]] = None, timeout=None) → Face

	Update face meta data in the gallery.

	Parameters

	
	face (sfapi_client.Face, sfapi_client.FaceId or id in integer) – face to be updated

	meta (dictionary) – face meta data to be updated. Keys must be strings and values must be either ints, strings or lists of strings. If a meta string is not passed or passed as null, it won’t be updated in the database.

	timeout (number) – FindFace core response timeout, in seconds (if none, the default value is used)

	Returns

	representation of the updated face

	Return type

	Face object

Filters for Database Search

	
class ntech.sfapi_client.filters.Filter

	Generic class. Represents a list of filters (with assigned values) that have to be applied to the gallery content.

	
serialize(self)

	Method that passes the list of filters with assigned values to the findface-sf-api component.

	Returns

	filter names and filter values

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] (‘filtername’, [“value1”, “value2”])

	
class ntech.sfapi_client.filters.Id

	Represents methods for filtering gallery content by id. Don’t instantiate, use relevant classmethods to call a filter.

	
classmethod lte(cls, value: int) → Filter

	LTE filter. Select all faces with id less or equal to value.

	Parameters

	value (integer) – id value

	Returns

	filter name (LTE) and its value.

	Return type

	object of Filter class.

Example: Id.lte(1234) selects faces with id less or equal to 1234.

	
classmethod gte(cls, value: int) → Filter

	GTE filter. Select all faces with id greater or equal to value.

	Parameters

	value (integer) – id value

	Returns

	filter name (GTE) and its value.

	Return type

	object of Filter class.

Example: Id.lte(1234) selects faces with id greater or equal to 1234.

	
classmethod oneof(cls, *value: typing.Union[int]) → Filter

	IN filter. Select a face(s) with id from a given set.

	Parameters

	value (list of integers) – list of id values

	Returns

	filter name (IN) and its value.

	Return type

	object of Filter class.

Example: Id.oneof(1234, 5678) selects a face(s) with id 1234 and/or 5678.

	
class ntech.sfapi_client.filters.Meta

	Represents methods for filtering gallery content by metadata. Don’t instantiate, use relevant classmethods to call a filter.

	
classmethod lte(self, value: typing.Union[str, int]) → Filter

	LTE filter. Select all faces with a metastring less or equal to value

	Parameters

	value (string or integer) – metastring value

	Returns

	filter name (LTE) and its value.

	Return type

	object of Filter class.

Example: Meta('foo').lte(1234) selects faces with a metastring foo less or equal to 1234.

	
classmethod gte(self, value: typing.Union[str, int]) → Filter

	GTE filter. Select all faces with a metastring greater or equal to value

	Parameters

	value (string or integer) – metastring value

	Returns

	filter name (GTE) and its value.

	Return type

	object of Filter class.

Example: Meta('foo').gte(1234) selects faces with a metastring foo greater or equal to 1234.

	
classmethod oneof(self, *value: typing.Union[str, int]) → Filter

	
IN filter. Select a face(s) with a metastring from a given set.

	param value

	list of metastring values

	type value

	list of strings or integers

	return

	filter name (IN) and its value.

	rtype

	object of Filter class.

Example: Meta.oneof(1234, 5678) selects a face(s) with a metastring 1234 and/or 5678.

	
classmethod subset(self, *value: str) → Filter

	
SUBSET filter. Select all faces with a metastring featuring all values from a given set.

	Parameters

	value (list of strings or integers) – list of metastring values

	Returns

	filter name (SUBSET) and its value.

	Return type

	object of Filter class.

Example: Meta('foo').subset("male", "angry") selects face with a metastring foo featuring all values from the set [“male”, “angry”].

	
class ntech.sfapi_client.filters.Detection(Filter)

	Represents a method that identifies a detected face (searches the database for similar faces).

	
__init__(self, id: typing.Union[str, objects.DetectFace], threshold: float)

	
	Parameters

	
	id (objects.DetectFace or temporary face id in memcached returned by sfapi_client.Client.detect(), string) – face (detection result) to be identified

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – identification threshold similarity between faces from 0 to 1.

Example: Detection(det1, 0.77) selects faces similar to the detection result det1 with similarity greater or equal to 0.77.

	
class ntech.sfapi_client.filters.Face(Filter)

	Represents a method that searches the database for faces similar to a given face from a gallery.

	
__init__(self, id: typing.Union[str, objects.Face], threshold: float)

	
	Parameters

	
	id (objects.Face, objects.FaceId or custom face id in the gallery, string) – face from a gallery to be identified

	threshold (float [https://docs.python.org/3/library/functions.html#float]) – identification threshold similarity between faces from 0 to 1.

Example: Detection(FaceId(“gal1”, 1234), 0.77) selects faces similar to the face 1234 from the gal1 gallery with similarity greater or equal than 0.77.

Several Filters Usage Example

filters=[filters.Id.gte(123456), filters.Meta('age').gte(45), filters.Meta('camera').oneof('abc', 'def')]

Display Error Messages

	
class sfapi_client.SFApiRemoteError

	This error message appears if the error occurred for a reason other than a network failure.

The error body always includes at least two fields: code and status.

	code is a short string in CAPS_AND_UNDERSCORES, usable for automatic decoding.

	reason is a human-readable description of the error and should not be interpreted automatically.

Common Error Codes

	Error code

	Description

	UNKNOWN_ERROR

	Error with unknown origin.

	BAD_PARAM

	The request can be read, however, some method parameters are invalid. This response type
contains additional attributes param and``value`` to indicate which parameters are invalid.

	CONFLICT

	Conflict.

	EXTRACTION_ERROR

	Error upon a face feature vector extraction.

	LICENSE_ERROR

	The system configuration does not match license.

	MALFORMED_REQUEST

	The request is malformed and cannot be read.

	OVER_CAPACITY

	The findface-extraction-api queue length has been exceeded.

	SOURCE_NOT_FOUND

	The face in the from parameter does not exist.

	SOURCE_GALLERY_NOT_FOUND

	The gallery in the from parameter does not exist.

	STORAGE_ERROR

	The biometric database not available.

	CACHE_ERROR

	Memcached not available.

	NOT_FOUND

	Matching faces not found.

	NOT_IMPLEMENTED

	This functionality not implemented.

	GALLERY_NOT_FOUND

	Matching galleries not found.

	
class sfapi_client.SFApiMalformedResponseError

	This error message appears if the error occurred due to a network failure, or if Client was unable to read an API response from findface-sf-api.

Examples

The following examples illustrate the basics of writing a plugin, as well as the use of classes and methods.

	If a detected face contains a label ‘emo’, this plugin will request facen and emotions data extraction and then log the received data.

import logging

from ntech import sfapi_client

from facerouter.plugin import Plugin

logger = logging.getLogger(__name__)

class LogEmoPlugin(Plugin):
 async def preprocess(self, request, labels):
 if labels.get('emo'):
 return ('facen', 'emotions')

 async def process(self, request, photo, bbox, event_id, detection: sfapi_client.DetectFace):
 logger.info('%r: %r', bbox, detection.features.get('emotions')[0]['emotion'])
 logger.info('%r: params: ', bbox)
 for param in request.params._fields:
 param_repr = repr(getattr(request.params, param))
 if len(param_repr) > 100:
 param_repr = param_repr[:97] + "..."
 logger.info("%r: %s", param, param_repr)

def activate(app, ctx, plugin_name, plugin_source):
 return LogEmoPlugin(ctx=ctx)

	This plugin requests facen extraction, after that it saves a face in the 'ppl' gallery of the biometric database. If such a gallery doesn’t exist, it will be created.

import logging
import PIL.Image
import time
from io import BytesIO

from ntech import sfapi_client

from facerouter.plugin import Plugin

logger = logging.getLogger(__name__)

class EnrollPlugin(Plugin):
 async def preprocess(self, request, labels):
 if labels.get('lol') == 'kek':
 return ('facen',)

 async def process(self, request, photo, bbox, event_id, detection: sfapi_client.DetectFace):
 img = PIL.Image.open(BytesIO(photo))
 thumb = img.crop(bbox)
 fname = '/tmp/%x.jpeg' % (event_id,)
 thumb.save(fname)
 while True:
 try:
 await self.ctx.sfapi['ppl'].add(event_id, detection, meta={
 'timestamp': int(time.time()),
 'photo_hash': fname,
 })
 except sfapi_client.SFApiRemoteError as e:
 if e.code == "GALLERY_NOT_FOUND":
 await self.ctx.sfapi['ppl'].create()
 else:
 raise
 else:
 break
 logger.info('%r: %r %r', bbox, event_id, fname)

def activate(app, ctx, plugin_name, plugin_source):
 return EnrollPlugin(ctx=ctx)

Advanced Features

In this chapter:

	Direct API requests to findface-extraction-api

	Shard Galleries Statistics

	Direct API Requests to Tarantool

	Hacks for findface-tarantool-server

	Real-time Face Liveness Detection

	Configure Multiple Video Cards Usage

Direct API requests to findface-extraction-api

You can use HTTP API to extract data directly from the findface-extraction-api component.

Note

Being a findface-sf-api counterpart when it comes to face features extraction via API, findface-extraction-api is more resource-demanding. The component cannot fully substitute findface-sf-api as it doesn’t allow adding faces and working with the database.

Tip

Normalized images received from findface-extraction-api are qualified for posting to findface-sf-api.

In this section:

	API Requests

	API Response Format

	Examples

API Requests

The findface-extraction-api component accepts POST requests to http://127.0.0.1:18666/.

There are 2 ways to format the request body:

	application/json: the request body contains only JSON.

	multipart/form-data: the request body contains a JSON part with the request itself, other body parts are used for image transfer.

The JSON part of the request body contains a set of requests:

{
 "requests": [request1, request2, .., requestN]
 "include_timings": true|false // include face processing timing in response, false by default
}

Each request in the set applies to a specific image or region in the image and accepts the following parameters:

Important

To enable recognition of face features, you can use either the new (preferred) or old API parameters. The old API allows you to recognize gender, age, and emotions, while the new API provides recognition of gender, age, emotions, country, beard, and glasses. Each face feature (gender, age, emotions, country, beard, or glasses) must be mentioned only once in a request, either in the new or old API format.

	"image": an uploaded image (use multipart:part to refer to a relevant request body part), or a publicly accessible image URL (http:, https:).

	"roi": a region of interest in the image. If the region is not specified, the entire image is processed.

	"detector": a face detector to apply to the image (legacy, nnd or prenormalized). The prenormalized mode accepts normalized face images and omits detecting faces. Use nnd if you need to estimate the face quality ("quality_estimator": true).

	"need_facen": if true, the request returns a facen in the response.

	"need_gender": returns gender (old API).

	"need_emotions": returns emotions (old API).

	"need_age": returns age (old API).

	"need_normalized": returns a normalized face image encoded in base64. The normalized image can then be posted again to the Extraction API component as “prenormalized”.

	"auto_rotate": if true, auto-rotates an original image to 4 different orientations and returns faces detected in each orientation. Works only if "detector": "nnd" and "quality_estimator": true.

	"attributes": array of strings in the format ["gender", "age", "emotions", "countries47", "beard", "glasses3"], enables recognition of the face features passed in the array (new API).

{
 "image": "http://static.findface.pro/sample.jpg",
 "roi": {"left": 0, "right": 1000, "top": 0, "bottom": 1000},
 "detector": "nnd",
 "need_facen": true,
 "need_gender": true,
 "need_emotions": true,
 "need_age": true,
 "need_normalized": true,
 "auto_rotate": true
}

API Response Format

A typical response from the findface-extraction-api component contains a set of responses to the requests wrapped into the main API request:

{
 "response": [response1, response2, .., responseN]
}

Each response in the set contains the following JSON data:

	"faces": a set of faces detected in the provided image or region of interest.

	"error": an error occurred during processing (if any). The error body includes the error code which can be interpreted automatically ("code") and a human-readable description ("desc").

	"facen_model": face extraction model if "need_facen": true.

	"timings": processing timings if "include_timings": true.

{
 "faces": [face1, face2, .., faceN],
 "error": {
 "code": "IMAGE_DECODING_FAILED",
 "desc": "Failed to decode: reason"
 }
 "facen_model": "elderberry_576",
 "timings": ...

}

Each face in the set is provided with the following data:

	"bbox": coordinates of a bounding box with the face.

	"detection_score": either the face detection accuracy, or the face quality score (depending on whether quality_estimator is false or true at /etc/findface-extraction-api.ini). Upright faces in frontal position are considered the best quality. They result in values around 0, mostly negative (such as -0.00067401276, for example). Inverted faces and large face angles are estimated with negative values some -5 and less.

	"facen": face feature vector.

	"gender": gender information (MALE or FEMALE) with recognition accuracy if requested (old API).

	"age": age estimate if requested (old API).

	"emotions": all available emotions in descending order of probability if requested (old API).

	"countries47": probable countries of origin with algorithm confidence in the result if requested (old API).

	"attributes": gender (male or female), age (number of years), emotions (predominant emotion), probable countries of origin, beard (beard or none), glasses (sun, eye, or none), along with algorithm confidence in the result if requested (new API).

	"normalized": a normalized face image encoded in base64 if requested.

	"timings": face processing timings if requested.

{
 "bbox": { "left": 1, "right": 2, "top": 3, "bottom": 4},
 "detection_score": 0.99,
 "facen": "...",
 "gender": {
 "gender": "MALE",
 "score": "1.123"
 },
 "age": 23.59,
 "emotions": [
 { "emotion": "neutral", "score": 0.95 },
 { "emotion": "angry", "score": 0.55 },
 ...
],
 "normalized": "...",
 "attributes": {
 "age": {
 "attribute": "age",
 "model": "age.v1",
 "result": 25
 },
 "beard": {
 "attribute": "beard",
 "model": "beard.v0",
 "result": [
 { "confidence": 0.015328666, "name": "beard" }
]
 },
 "countries47": {
 "attribute": "countries47",
 "model": "countries47.v1",
 "result": [
 { "confidence": 0.90330666, "name": "UKR" },
 { "confidence": 0.013165677, "name": "RUS" },
 { "confidence": 0.009136979, "name": "POL" },
 ...
]
 },
 "emotions": {
 "attribute": "emotions",
 "model": "emotions.v1",
 "result": [
 { "confidence": 0.99959123, "name": "neutral" },
 { "confidence": 0.00039093022, "name": "sad" },
 { "confidence": 8.647058e-06, "name": "happy" },
 { "confidence": 7.994732e-06, "name": "surprise" },
 { "confidence": 6.495376e-07, "name": "disgust" },
 { "confidence": 6.063106e-07, "name": "angry" },
 { "confidence": 7.077886e-10, "name": "fear" }
]
 },
 "gender": {
 "attribute": "gender",
 "model": "gender.v2",
 "result": [
 { "confidence": 0.999894, "name": "female" },
 { "confidence": 0.00010597264, "name": "male" }
]
 },
 "glasses3": {
 "attribute": "glasses3",
 "model": "glasses3.v0",
 "result": [
 { "confidence": 0.9995815, "name": "none" },
 { "confidence": 0.0003348241, "name": "eye" },
 { "confidence": 8.363914e-05, "name": "sun" }
]
 }
 }
 "timings": ...
}

Examples

Request #1

curl -X POST -F sample=@sample.jpg -F 'request={"requests":[{"image":"multipart:sample","detector":"nnd", "need_gender":true, "need_normalized": true, "need_facen": true}]}' http://127.0.0.1:18666/| jq

Response

{
 "responses": [
 {
 "faces": [
 {
 "bbox": {
 "left": 595,
 "top": 127,
 "right": 812,
 "bottom": 344
 },
 "detection_score": -0.0012599,
 "facen": "qErDPTE...vd4oMr0=",
 "gender": {
 "gender": "FEMALE",
 "score": -2.6415858
 },
 "normalized": "iVBORw0KGgoAAAANSUhE...79CIbv"
 }
]
 }
]
}

Request #2

curl -X POST -F 'request={"requests": [{"need_age": true, "need_gender": true, "detector": "nnd", "roi": {"left": -2975, "top": -635, "right": 4060, "bottom": 1720}, "image": "https://static.findface.pro/sample.jpg", "need_emotions": true}]}' http://127.0.0.1:18666/ |jq

Response

{
 "responses": [
 {
 "faces": [
 {
 "bbox": {
 "left": 595,
 "top": 127,
 "right": 812,
 "bottom": 344
 },
 "detection_score": 0.9999999,
 "gender": {
 "gender": "FEMALE",
 "score": -2.6415858
 },
 "age": 26.048346,
 "emotions": [
 {
 "emotion": "neutral",
 "score": 0.90854686
 },
 {
 "emotion": "sad",
 "score": 0.051211596
 },
 {
 "emotion": "happy",
 "score": 0.045291856
 },
 {
 "emotion": "surprise",
 "score": -0.024765536
 },
 {
 "emotion": "fear",
 "score": -0.11788454
 },
 {
 "emotion": "angry",
 "score": -0.1723868
 },
 {
 "emotion": "disgust",
 "score": -0.35445923
 }
]
 }
]
 }
]
}

Request #3. Auto-rotation

curl -s -F 'sample=@/path/to/your/photo.png' -F 'request={"requests":[{"image":"multipart:sample","detector":"nnd", "auto_rotate": true, "need_normalized": true }]}' http://192.168.113.79:18666/

Response

{
 "responses": [
 {
 "faces": [
 {
 "bbox": {
 "left": 96,
 "top": 99,
 "right": 196,
 "bottom": 198
 },
 "detection_score": -0.00019264,
 "normalized": "iVBORw0KGgoAAAANSUhE....quWKAAC"
 },
 {
 "bbox": {
 "left": 205,
 "top": 91,
 "right": 336,
 "bottom": 223
 },
 "detection_score": -0.00041600747,
 "normalized": "iVBORw0KGgoAAAANSUhEUgAA....AByquWKAACAAElEQVR4nKy96XYbybIdnF"
 }
]
 }
]
}

Request #4. New API usage (attributes: “beard”, “emotions”, “age”, “gender”, “glasses3”, “face”)

curl -s -F photo=@sample.jpg -Frequest='{"requests": [{"image":"multipart:photo", "detector": "nnd", "attributes": ["beard", "emotions", "age", "gender", "glasses3", "face"]}]}' http://127.0.0.1:18666 | jq

Response

{
 "responses": [
 {
 "faces": [
 {
 "bbox": {
 "left": 595,
 "top": 127,
 "right": 812,
 "bottom": 344
 },
 "detection_score": -0.00067401276,
 "rotation_angle": 0,
 "attributes": {
 "age": {
 "attribute": "age",
 "model": "age.v1",
 "result": 25
 },
 "beard": {
 "attribute": "beard",
 "model": "beard.v0",
 "result": [
 {
 "confidence": 0.015324414,
 "name": "beard"
 }
]
 },
 "emotions": {
 "attribute": "emotions",
 "model": "emotions.v1",
 "result": [
 {
 "confidence": 0.99958,
 "name": "neutral"
 },
 {
 "confidence": 0.0004020365,
 "name": "sad"
 },
 {
 "confidence": 8.603454e-06,
 "name": "happy"
 },
 {
 "confidence": 8.076766e-06,
 "name": "surprise"
 },
 {
 "confidence": 6.6535216e-07,
 "name": "disgust"
 },
 {
 "confidence": 6.1434775e-07,
 "name": "angry"
 },
 {
 "confidence": 7.3372125e-10,
 "name": "fear"
 }
]
 },
 "face": {
 "attribute": "face",
 "model": "elderberry_576",
 "result": "KjiHu6cWh70ppqa9l"
 },
 "gender": {
 "attribute": "gender",
 "model": "gender.v2",
 "result": [
 {
 "confidence": 0.9998938,
 "name": "female"
 },
 {
 "confidence": 0.000106243206,
 "name": "male"
 }
]
 },
 "glasses3": {
 "attribute": "glasses3",
 "model": "glasses3.v0",
 "result": [
 {
 "confidence": 0.99958307,
 "name": "none"
 },
 {
 "confidence": 0.00033243417,
 "name": "eye"
 },
 {
 "confidence": 8.4465064e-05,
 "name": "sun"
 }
]
 }
 }
 }
],
 "orientation": 1
 }
]
}

Shard Galleries Statistics

You can get a shard galleries statistics and other data right in your browser. This functionality can be harnessed in monitoring systems.

Note

In the case of the standalone deployment, you can access Tarantool by default only locally (127.0.0.1). If you want to access Tarantool remotely, alter the Tarantool configuration file.

In this section:

	List Galleries

	Get Gallery Information

List Galleries

To list all galleries on a shard, type in the address bar of your browser:

http://<tarantool_host_ip:shard_port>/stat/list/:start/:limit

:start is the number of a gallery the list starts with.

:limit is the maximum number of galleries in the list.

The response will feature JSON with the following fields:

	next: pagination cursor to retrieve the next page with results, pass it as :start_id in the following request

	total: total number of galleries on the shard

	galleries: gallery list with the following data:
* id: gallery id
* name: gallery name
* cnt_linear: number of faces in the linear space (faces without fast index)
* cnt_preindex: number of faces in the preindex space (intermediate stage when creating fast index)
* cnt_indexed: number of faces in the indexed space (faces with fast index)

Example

Request

http://127.0.0.1:8001/stat/list/1/99
or
curl http://127.0.0.1:8001/stat/list/1/99 \| jq

Response

HTTP/1.1 200 Ok
Content-length: 170
Server: Tarantool http (tarantool v1.7.3-673-g23cc4dc)
Connection: keep-alive

{"next":3,"galleries":[{"cnt_indexed":3,"id":1,"cnt_preindex":0,"name":"a","cnt_linear":0},{"cnt_indexed":1,"id":2,"cnt_preindex":0,"name":"b","cnt_linear":1}],"total":5}

Get Gallery Information

To get a gallery information, type in the address bar of your browser:

http://<tarantool_host_ip:shard_port>/stat/info/:name

:name is the gallery name.

The response will feature JSON with the following fields:

	id: gallery id

	name: gallery name

	cptr: uint64_t address of the gallery object in the memory

	cnt_linear: number of faces in the linear space

	cnt_preindex: number of faces in the preindex space

	cnt_preindex_deleted: number of faces removed from the preindex space, which are physically still present in Tarantool

	cnt_indexed: number of faces in the indexed space

	cnt_indexed_deleted: number of faces removed from the indexed space, which are physically still present in Tarantool

	index_file: path to fast index file

	index_loaded: indicator of whether or not fast index is loaded

Example

Request

http://127.0.0.1:8001/stat/info/my_gal
or
curl http://127.0.0.1:8001/stat/info/my_gal | jq

Response

HTTP/1.1 200 Ok
Content-length: 196
Server: Tarantool http (tarantool v1.7.3-673-g23cc4dc)
Connection: keep-alive

{"cnt_indexed":2464344,"cnt_preindex_deleted":139,"index_file":"none","index_loaded":false,"cnt_preindex":8310,"cnt_linear":959,"cptr":29253696,"id":1,"name":"my_gal","cnt_indexed_deleted":78811}

Direct API Requests to Tarantool

You can use HTTP API to extract data directly from the Tarantool Database.

In this section:

	General Information

	Add Face

	Remove Face

	Face Search

	Edit Face Metadata and Feature Vector

	List Galleries

	Get Gallery Info

	Create Gallery

	Remove Gallery

General Information

API requests to Tarantool are to be sent to http://<tarantool_host_ip:port>.

Tip

The port for API requests can be found in the FindFace.start section of the Tarantool configuration file:

cat /etc/tarantool/instances.enabled/FindFace.lua

##8001:
FindFace.start("127.0.0.1", 8001)

Note

In the case of the standalone deployment, you can access Tarantool by default only locally (127.0.0.1). If you want to access Tarantool remotely, alter the Tarantool configuration file.

API requests to Tarantool may contain the following parameters in path segments:

	:ver: API version (v2 at the moment).

	:name: gallery name.

Tip

To list gallery names on a shard, type in the following command in the address bar of your browser (see List Galleries for details):

http://<tarantool_host_ip:shard_port>/stat/list/1/99

The same command on the console is as such:

curl <tarantool_host_ip:shard_port>/stat/list/1/99 \| jq

You can also list gallery names by using a direct request to Tarantool:

echo 'box.space.galleries:select()' | tarantoolctl connect <tarantool_host_ip:shard_port>

Note that if there is a large number of shards in the system, chances are that a randomly taken shard does not contain all the existing galleries. In this case, just list galleries on several shards.

Add Face

POST /:ver/faces/add/:name

Parameters in body:

JSON-encoded array of faces with the following fields:

	"id": face id in the gallery, uint64_t,

	"facen": raw feature vector, base64,

	"meta": face metadata, dictionary.

Returns:

	HTTP 200 and empty body on success.

	HTTP 404 if a gallery with the given name doesn’t exist.

	HTTP with a status other than 200 and error description in the body on failure.

Example

Request

curl -D - -s 'http://localhost:8001/v2/faces/add/testgal' --data '
[
 {
 "id": 9223372036854776000,
 "facen": "qgI3vZRv/z…NpO9MdHavW1WuT0=",
 "meta": {
"cam_id": "223900",
"person_name": "Mary Ostin",

 }
 }
]

Response

HTTP/1.1 200 Ok
Content-length: 1234
Server: Tarantool http (tarantool v1.7.3-673-g23cc4dc)
Connection: keep-alive

Remove Face

POST /v2/faces/delete/:name

Parameters in body:

JSON-encoded array of face ids to be removed

Returns:

	HTTP 200 and empty body on success.

	HTTP 404 if a face with the given id is not found in the gallery.

	HTTP with a status other than 200 and error description in the body on failure.

Example

Request

curl -D - -s 'http://localhost:8001/v2/faces/delete/testgal' --data '[1, 4, 922, 3]'

Response

HTTP/1.1 200 Ok
Content-length: 111
Server: Tarantool http (tarantool v1.7.3-673-g23cc4dc)
Connection: keep-alive

Face Search

POST /v2/faces/search/:name

Parameters in body:

JSON-encoded search request with the following fields:

	limit: maximum number of faces in the response.

	sort: sorting order. Pass one of the following values: id: increasing order by id, -id: decreasing order by id, -score: decreasing order by face similarity (only if you search for faces with similar feature vectors).

	filter (filters):
* facen: (optional) search for faces with similar feature vectors. Pass a dictionary with the following fields: data: raw feature vector, base64; score: range of similarity between faces [threshold similarity; 1], where 1 is 100% match.
* id and meta/<meta_key>: search by face id and metastring content. To set this filter, use the following operators:

	range: range of values, only for numbers.

	set: id or metastring must contain at least one value from a given set, for numbers and strings.

	subset: id or metastring must include all values from a given subset, for numbers and strings.

	like: by analogy with like in SQL requests: only ‘aa%’, ‘aa%’, and ‘%aa%’ are supported. Only for strings и set[string]. In the case of set[string], the filter will return result if at least one value meets the filter condition.

	ilike: by analogy with like but case-insensitive, only for strings и set[string].

Returns:

	JSON-encoded array with faces on success. The value in the X-search-stat header indicates whether the fast index was used for the search: with_index or without_index.

Note

Fast index is not used in API v2.

	HTTP with a status other than 200 and error description in the body on failure.

Example

Request

curl -D - -s 'http://localhost:8001/v2/testgal/search' --data '
{
 "limit": 2,
 "sort": {
 "score": -1
 },
 "filter": {
 "facen": {
 "data": "qgI3vZRv/z0BQTk9rcirOyZrNpO9MdHavW1WuT0=",
 "score": [0.75, 1]
 },
 "id": {
 "range": [9223372036854000000, 9223372036854999000]
 },
 "meta": {
 "person_id": {
 "range": [444, 999]
 },
 "cam_id": {
 "set": ["12767", "8632", "23989"]
 }
 }
 }
}'

Response

HTTP/1.1 200 Ok
Content-length: 1234
X-search-stat: without_index
Server: Tarantool http (tarantool v1.7.3-673-g23cc4dc)
Connection: keep-alive

{
 "results": [
 {
 "facen": " qgI3vZRv/z0BQTk9rcirOyZrNpO9MdHavW1WuT0=",
 "meta": {
 "timestamp": 0,
 "photo_hash": "",
 "person_id": 777,
 "cam_id": "8632"
 },
 "score": 0.9964,
 "id": 9223372036854776000
 }
]
}

Edit Face Metadata and Feature Vector

POST /v2/faces/update/:name

Parameters in body:

JSON-encoded array with faces with the following fields:

	"id": face id, uint64_t.

	"facen": (optional) new feature vector, base64. If omitted or passed as null, the relevant field in the database won’t be updated.

	"meta": dictionary with metadata to be updated. If some metastring is omitted or passed as null, the relevant field in the database won’t be updated.

Returns:

	HTTP 200 and dictionary with all face parameters, including not updated, on success.

	HTTP 404 and error description if a face with the given id doesn’t exist.

	HTTP with a status other than 200 and error description in the body on failure.

Example

Request

curl -D - -s 'http://localhost:8001/v2/faces/update/sandbox' --data '[{"id":1,"facen":null,"meta":{"m:timestamp":1848}}]'

Response

HTTP/1.1 200 Ok
Content-length: 151
Server: Tarantool http (tarantool v1.7.3-673-g23cc4dc)
Connection: keep-alive

{"meta":{"m:timestamp":1848,"normalized_id":"1_b9pkrf00mjt6h1vmq1kg.png","m:cam_id":"a9f7a973-f07e-469d-a3bd-41ddd510b26f","feat":"{\"score\":0.123}"}, "id":1, ... }

List Galleries

POST /v2/galleries/list

Returns:

JSON-encoded array with galleries with the following fields: name: gallery name, faces: number of faces in a gallery.

Example

Request

curl -D - -s -X POST http://localhost:8001/v2/galleries/list

Response

HTTP/1.1 200 Ok
Content-length: 42
Server: Tarantool http (tarantool v1.7.3-673-g23cc4dc)
Connection: keep-alive

{
 "results": [
 {
 "name": "testgal",
 "faces": 2
 }
]
}

Get Gallery Info

POST /v2/galleries/get/:name

Returns:

	HTTP 200 and dictionary with gallery parameters on success.

	HTTP 404 and error description if a gallery with the given name doesn’t exist.

	HTTP with a status other than 200 and error description in the body on failure.

Example

Request

curl -D - -s -X POST http://localhost:8001/v2/galleries/get/testgal

HTTP/1.1 200 Ok
Content-length: 11
Server: Tarantool http (tarantool v1.7.3-673-g23cc4dc)
Connection: keep-alive

{"faces":2}

Create Gallery

POST /v2/galleries/add/:name

Returns:

	HTTP 200 and empty body on success.

	with a status other than 200 and error description in the body on failure.

Example

Request

curl -D - -X POST -s 'http://localhost:8001/v2/galleries/add/123'

Response

HTTP/1.1 409 Conflict
Content-length: 57
Server: Tarantool http (tarantool v1.7.3-673-g23cc4dc)
Connection: keep-alive

{"error":{"message":"gallery already exists","code":409}}

Remove Gallery

POST /v2/galleries/delete/:name

Returns:

	HTTP 200 and empty on success.

	with a status other than 200 and error description in the body on failure.

Example

Request

curl -D - -X POST -s 'http://localhost:8001/v2/galleries/delete/123'

Response

HTTP/1.1 204 No content
Content-length: 0
Server: Tarantool http (tarantool v1.7.3-673-g23cc4dc)
Connection: keep-alive

Hacks for findface-tarantool-server

In this section:

	Additional Configuration Parameters

	Soft Deletion Mode

	Tarantool Replication

Additional Configuration Parameters

To configure interaction between findface-sf-api and Tarantool, specify additional parameters in the 3rd argument of the FindFace.start section in the findface-tarantool-server configuration file:

sudo vi /etc/tarantool/instances.enabled/FindFace.lua

FindFace.start("127.0.0.1", 8001, {license_ntls_server="127.0.0.1:3133", additional parameter 1, ..., additional parameter N})

Example:
FindFace.start("127.0.0.1", 8001, {license_ntls_server="127.0.0.1:3133", facen_size = 576, log_requests = false})

Additional parameters:

	Parameter

	Default value

	Description

	log_requests

	true

	Enable request logging (/var/log/tarantool/FindFace.log).

	facen_size

	576

	Feature vector size, subject to the neural network model in use. Before editing this parameter, be sure to consult
our experts by support@ntechlab.com.

	search_threads

	1

	Number of threads for fast index search.

	replication

	nil

	Only for a replica. Master instance IP address.

	soft_delete_mode

	false

	Enable the soft deletion mode, when the faces are not removed from the fast index, but hidden in search results.

Soft Deletion Mode

Tarantool supports the soft deletion mode, when the faces are not removed from the fast index, but hidden in search results. We recommend you to enable this mode due to the following benefits:

	Tarantool starting time linearly depends on the number of faces removed from the Indexed space (fast index). If the soft deletion mode is on, the faces are not physically removed from the fast index, so face deletion doesn’t affect the starting time.

	Fast index search quality also depends on the number of physically removed faces. It doesn’t sink in the soft deletion mode.

To enable the soft deletion mode, edit the FindFace.start section as follows:

FindFace.start("127.0.0.1", 8001, {license_ntls_server="127.0.0.1:3133", soft_delete_mode = true})

Tarantool Replication

Replication allows multiple Tarantool instances to work on copies of the same face database. The database copies are kept in sync because each
instance can communicate its changes to all the other instances. Tarantool supports master-slave replication. You can add and delete data
only by using the master instance, slave instances (aka replicas) are read-only, i.e. can be used only for searching and consulting data.

To learn how to deploy a Tarantool replica set, refer to the Tarantool official documentation [https://tarantool.org/en/doc/1.7/singlehtml.html#document-doc/1.7/book/replication/index].

To start a created replica for the first time, do the following:

	Start the master instance.

	In the replica configuration file, specify the IP address and listening port of the master instance.

FindFace.start("127.0.0.1", 48001, {replication = "127.0.0.1:33001"})

	Copy the latest snapshot (.snap) of the master instance into the memtx_dir directory of the replica.

--Directory to store data
 memtx_dir = '/opt/ntech/var/lib/tarantool/default/snapshots'

	Copy the master instance logs into the wal_dir directory of the replica.

--Directory to store data
 wal_dir = '/opt/ntech/var/lib/tarantool/default/xlogs'

	Start the replica. You can start as many replicas affiliated with the same master instance as needed.

Important

Before enabling the fast index for the master instance :use_index("/path/to/<index>.idx"), copy the index file (<index>.idx) to the same path on its replica. Then perform use_index on the master instance.

Tip

Delete obsolete index files on the replica in order to avoid unnecessary index transitions, should the master instance and replica be heavily out of sync.

Tip

To synchronize the master instance and replica, you can also copy the latest master snapshot to the replica.

Real-time Face Liveness Detection

Important

The face liveness detection can be enabled only on the GPU-accelerated video face detector findface-video-worker-gpu.

To spot fake faces and prevent photo attacks, use the integrated 2D anti-spoofing system that distinguishes a live face from a face image. Due to the analysis of not one, but a number of frames, the algorithm captures any changes in a facial expression and skin texture. This ensures that it is a live person in front of a camera and eliminates the possibility of fraud using images on paper or mobile device screens.

The liveness detector estimates a face liveness with a certain level of confidence and returns the confidence score along with a binary result real/fake, depending on the pre-defined liveness threshold.

To enable the face liveness detector, do the following:

	Open the /etc/findface-video-worker-gpu.ini configuration file. In the liveness –> fnk parameter, specify the path to the face liveness detector model as shown below.

sudo vi /etc/findface-video-worker-gpu.ini

[liveness]
#------------------------------
path to liveness fnk
fnk = /usr/share/findface-data/models/faceattr/liveness.v1.gpu.fnk

	Restart findface-video-worker-gpu.

sudo systemctl restart findface-video-worker-gpu

Once the face liveness detector enabled, the findface-video-worker-gpu service will be posting face liveness data to findface-facerouter in the liveness key of the detectorParams dictionary. To process a face according to its liveness, write a plugin.

Configure Multiple Video Cards Usage

Should you have several video cards installed on a physical server, you can create additional findface-extraction-api-gpu or findface-video-worker-gpu instances and distribute them across the video cards, one instance per card.

In this section:

	Allocate findface-video-worker-gpu to Additional Video Card

Allocate findface-video-worker-gpu to Additional Video Card

To create an additional findface-video-worker-gpu instance and allocate it to a different video card, do the following:

	Display the findface-video-worker-gpu primary service status by executing:

sudo systemctl status findface-video-worker-gpu.service

	Find the full path to the service in the line Loaded: loaded (/lib/systemd/system/findface-video-worker-gpu.service; enabled; vendor preset: enabled. It is findface-video-worker-gpu.service in our example (name may vary). Create a copy of the service under a new name.

sudo cp /lib/systemd/system/findface-video-worker-gpu.service /lib/systemd/system/findface-video-worker-gpu2.service`

	In the same manner, create a copy of the primary service configuration file under a new name.

sudo cp /etc/findface-video-worker-gpu.ini /etc/findface-video-worker-gpu2.ini

	Open the just created configuration file and actualize the video card number to use.

sudo vim /etc/findface-video-worker-gpu2.ini

cuda device number
device_number = 1

	Open the new service and actualize the configuration file to use by specifying the just created one.

sudo vim /lib/systemd/system/findface-video-worker-gpu2.service

ExecStart=/usr/bin/findface-video-worker-gpu --config /etc/findface-video-worker-gpu2.ini

	Reload the systemd daemon to apply the changes.

sudo systemctl daemon-reload

	Enable the new service autostart.

sudo systemctl enable findface-video-worker-gpu2.service

Created symlink from /etc/systemd/system/multi-user.target.wants/findface-video-worker-gpu2.service to /lib/systemd/system/findface-video-worker-gpu2.service

	Launch the new service.

sudo systemctl start findface-video-worker-gpu2.service

	Check the both findface-video-worker-gpu services status.

sudo systemctl status findface-video-worker-* | grep -i 'Active:' -B 3

● findface-video-worker-gpu2.service - findface-video-worker-gpu daemon
 Loaded: loaded (/lib/systemd/system/findface-video-worker-gpu2.service; enabled; vendor preset: enabled)
 Active: active (running) since Thu 2019-07-18 10:32:02 MSK; 1min 11s ago

...

● findface-video-worker-gpu.service - findface-video-worker-gpu daemon
 Loaded: loaded (/lib/systemd/system/findface-video-worker-gpu.service; enabled; vendor preset: enabled)
 Active: active (running) since Mon 2019-07-15 15:18:33 MSK; 2 days ago

Maintenance and Troubleshooting

In this chapter:

	Checking Component Status

	Analyze Log Files

	Troubleshoot Licensing and findface-ntls

	Automatic Tarantool Recovery

Checking Component Status

Check the status of components once you have encountered a system problem.

	Component

	Command to view service status

	findface-extraction-api

	sudo systemctl status findface-extraction-api.service

	findface-sf-api

	sudo systemctl status findface-sf-api.service

	findface-tarantool-server

	sudo systemctl status tarantool@FindFace.service

	findface-video-manager

	sudo systemctl status findface-video-manager.service

	findface-video-worker

	sudo systemctl status findface-video-worker.service

	findface-video-worker-gpu

	sudo systemctl status findface-video-worker-gpu.service

	findface-ntls

	sudo systemctl status findface-ntls

	etcd

	sudo systemctl status etcd.service

	NginX

	sudo systemctl status nginx.service

	memcached

	sudo systemctl status memcached.service

Analyze Log Files

Log files provide a complete record of each FindFace Enterprise Server component activity. Consulting logs is one of the first things you should do to identify a cause for any system problem.

	Component

	Command to view log

	findface-extraction-api

	sudo tail -f /var/log/syslog | grep extraction-api

	findface-sf-api

	sudo tail -f /var/log/syslog | grep sf-api

	findface-tarantool-server

	sudo tail -f /var/log/tarantool/FindFace.log

	findface-video-manager

	sudo tail -f /var/log/syslog | grep video-manager

	findface-video-worker,
findface-video-worker-gpu

	sudo tail -f /var/log/syslog | grep video-worker

	findface-ntls

	sudo tail -f /var/log/syslog | grep ntls

	etcd

	sudo tail -f /var/log/syslog | grep etcd

Troubleshoot Licensing and findface-ntls

When troubleshooting licensing and findface-ntls (see Provide Licensing), the first step is to retrieve the licensing information and findface-ntls status. You can do so by sending an API request to findface-ntls. Necessary actions are then to be undertaken, subject to the response content.

Tip

Please do not hesitate to contact our experts on troubleshooting by info@ntechlab.com.

Retrieve Licensing Information

To retrieve the FindFace Enterprise Server licensing information and findface-ntls status, execute on the findface-ntls host console:

curl http://localhost:3185/license.json -s | jq

The response will be given in JSON. One of the most significant parameters is last_updated. It indicates in seconds how long ago the local license has been checked for the last time.

Interpret the last_updated value as follows:

	[0, 5] — everything is alright.

	(5, 30] — there may be some problems with connection, or with the local drive where the license file is stored.

	(30; 120] — almost certainly something bad happened.

	(120; ∞) — the licensing source response has been timed out. Take action.

	"valid": false: connection with the licensing source was never established.

curl http://localhost:3185/license.json -s | jq
{
 "name": "NTLS",
 "time": 1520844897,
 "type": "offline (extended)",
 "license_id": "001278983",
 "generated": 487568400,
 "last_updated": 4,
 "valid": {
 "value": true,
 "description": ""
 },
 "source": "/ntech/license/001278983.lic",
 "limits": [
 {
 "type": "time",
 "name": "end",
 "value": 25343
 },
 {
 "type": "number",
 "name": "faces",
 "value": 90071,
 "current": 230258
 },
 {
 "type": "number",
 "name": "cameras",
 "value": 9007,
 "current": 3
 },
 {
 "type": "number",
 "name": "extraction_api",
 "value": 900,
 "current": 8
 },
 {
 "type": "boolean",
 "name": "gender",
 "value": true
 },
 {
 "type": "boolean",
 "name": "age",
 "value": true
 },
 {
 "type": "boolean",
 "name": "emotions",
 "value": true
 },
 {
 "type": "boolean",
 "name": "fast-index",
 "value": true
 }
],
 "services": [
 {
 "name": "video-worker",
 "ip": "127.0.0.1:58970"
 },
 {
 "name": "FindFace-tarantool",
 "ip": "127.0.0.1:58978"
 },
 {
 "name": "findface-extraction-api",
 "ip": "127.0.0.1:52376"
 }
]
}

Automatic Tarantool Recovery

If your system architecture doesn’t imply uninterrupted availability of Tarantool servers, it is recommended to enable automatic database recovery. In this case, each time an error occurs while reading a snapshot or xlog file, Tarantool will skip invalid records, read as much data as possible, and re-build the file.

Warning

The automatic recovery process may result in MongoDB and Tarantool being out of sync.

To enable automatic database recovery, do the following:

Note

You have to repeat the following instructions on each Tarantool shard.

	Open a shard configuration file.

sudo vi /etc/tarantool/instances.enabled/<shard_001>.lua

	Uncomment force_recovery = true.

box.cfg{

 force_recovery = true,
}

	Restart the shard.

sudo systemctl restart tarantool@<shard_001>.service

Appendices

In this chapter:

	Neural Network Models

	Components in Depth

	Installation File

Neural Network Models

Here you can see a summary for neural network models created by our Lab and used in FindFace Enterprise Server:

Note

The CPU and GPU benchmark setup is the following:

	CPU: OpenBLAS 0.2.18 (single thread), Intel(R) Core(TM) i7-5930K CPU @ 3.50GHz

	GPU: CUDA 8.0, GeForce GTX 1080

	Type

	Name

	In use

	Facen
size,
bytes

	CPU

	GPU

	FPS

	RAM, MB

	FPS

	RAM, MB

	Face biometrics

	model_36

	2016

	160

	N/A

	N/A

	N/A

	N/A

	model_39c

	2016

	160

	N/A

	N/A

	N/A

	N/A

	fr_1

	2016 - 04/05/2017

	160

	N/A

	N/A

	N/A

	N/A

	en_1

	2016 - 03/03/2017

	320

	N/A

	N/A

	N/A

	N/A

	en2_face0

	since 03/14/2017

	320

	N/A

	N/A

	N/A

	N/A

	apricot_160f

	since 07/31/2017

	160

	5.15

	336

	166.11

	622

	apricot_320

	since 07/31/2017

	320

	4.87

	386

	165.29

	616

	banana_800f

	since 09/15/2017

	800

	0.71

	2407

	26.37

	2638

	cherry_480

	since 03/30/2018

	480

	1.24

	1880

	57.59

	2144

	dragonfruit_576

	since 06/28/2018

	576

	1.02

	2205

	48.11

	2424

	elderberry_576

	since 07/31/2018

	576

	1.02

	2205

	48.11

	2424

	Gender recognition

	fr_1_gender0

	since 04/05/2017

	N/A

	N/A

	N/A

	N/A

	N/A

	Age recognition

	fr_1_age0

	since 04/05/2017

	N/A

	N/A

	N/A

	N/A

	N/A

	Emotions recognition

	model_39c_em

	04/05/2017-
08/11/2017

	N/A

	N/A

	N/A

	N/A

	N/A

	emotion_1

	since 08/11/2017

	N/A

	N/A

	N/A

	N/A

	N/A

	Country recognition

	countries47.v0

	since 08/21/2018

	N/A

	4.14

	509

	118.48

	662

Components in Depth

In this section:

	findface-extraction-api

	findface-sf-api

	findface-tarantool-server

	findface-upload

	findface-facerouter

	Video face detection: findface-video-manager and findface-video-worker

	findface-ntls

findface-extraction-api

The findface-extraction-api service uses neural networks to detect a face in an image, extract face biometric data (feature vector), and recognize gender, age, emotions, and other features.

It interfaces with the findface-sf-api service as follows:

	Gets original images with faces and normalized face images.

	Returns the coordinates of the face bounding box, and (optionally) feature vector, face feature data, should these data be requested by findface-sf-api.

Tip

You can use HTTP API to directly access findface-extraction-api.

Functionality:

	face detection in an original image (with return of the bbox coordinates),

	face normalization,

	feature vector extraction from a normalized image,

	gender/age/emotions/country recognition.

The findface-extraction-api service can be based on CPU (installed from the findface-extraction-api package) or GPU (installed from the findface-extraction-api-gpu package). For both CPU- and GPU-accelerated services, configuration is done through the /etc/findface-extraction-api.ini configuration file. Its content varies subject to the acceleration type.

CPU-service configuration file:

allow_cors: false
detector_instances: 0
dlib:
 model: /usr/share/findface-data/normalizer.dat
 options:
 adjust_threshold: 0
 upsample_times: 1
extractors:
 instances: 1
 max_batch_size: 16
 models:
 age: ''
 emotions: ''
 face: face/elderberry_576.cpu.fnk
 gender: ''
 models_root: /usr/share/findface-data/models
fetch:
 enabled: true
 size_limit: 10485760
license_ntls_server: 127.0.0.1:3133
listen: 127.0.0.1:18666
max_dimension: 6000
nnd:
 model: /usr/share/nnd/nnd.dat
 options:
 max_face_size: .inf
 min_face_size: 30
 o_net_thresh: 0.9
 p_net_max_results: 0
 p_net_thresh: 0.5
 r_net_thresh: 0.5
 scale_factor: 0.79
 quality_estimator: true
 quality_estimator_model: /usr/share/nnd/quality_estimator_v2.dat
ticker_interval: 5000

GPU-service configuration file:

allow_cors: false
detector_instances: 0
dlib:
 model: /usr/share/findface-data/normalizer.dat
 options:
 adjust_threshold: 0
 upsample_times: 1
extractors:
 instances: 2
 max_batch_size: 16
 models:
 age: ''
 emotions: ''
 face: face/elderberry_576.gpu.fnk
 gender: ''
 models_root: /usr/share/findface-data/models
fetch:
 enabled: true
 size_limit: 10485760
license_ntls_server: 127.0.0.1:3133
listen: 127.0.0.1:18666
max_dimension: 6000
nnd:
 model: /usr/share/nnd/nnd.dat
 options:
 max_face_size: .inf
 min_face_size: 30
 o_net_thresh: 0.8999999761581421
 p_net_max_results: 0
 p_net_thresh: 0.5
 r_net_thresh: 0.5
 scale_factor: 0.7900000214576721
 quality_estimator: true
 quality_estimator_model: /usr/share/nnd/quality_estimator_v2.dat
prometheus:
 faces_buckets:
 - 0
 - 1
 - 2
 - 5
 - 10
 - 20
 - 50
 - 75
 - 100
 - 200
 - 300
 - 400
 - 500
 - 600
 - 700
 - 800
 - 900
 - 1000
 resolution_buckets:
 - 10000
 - 20000
 - 40000
 - 80000
 - 100000
 - 200000
 - 400000
 - 800000
 - 1e+06
 - 2e+06
 - 3e+06
 - 4e+06
 - 5e+06
 - 6e+06
 - 8e+06
 - 1e+07
 - 12000000.0
 - 15000000.0
 - 18000000.0
 - 2e+07
 - 3e+07
 - 5e+07
 - 1e+08
 timing_buckets:
 - 0.001
 - 0.005
 - 0.01
 - 0.02
 - 0.03
 - 0.05
 - 0.1
 - 0.2
 - 0.3
 - 0.5
 - 0.75
 - 0.9
 - 1
 - 1.1
 - 1.3
 - 1.5
 - 1.7
 - 2
 - 3
 - 5
 - 10
 - 20
 - 30
 - 50
ticker_interval: 5000

When configuring findface-extraction-api (CPU- or GPU-based), refer to the following parameters:

	Parameter

	Description

	nnd -> quality_estimator

	Enables face quality estimation. In this case, findface-extraction-api returns a face quality score
in the detection_score field. Interpret the quality score further in analytics. Upright faces in
frontal position are considered the best quality. They result in values around 0, mostly negative
(such as -0.00067401276, for example). Inverted faces and large face angles are estimated with negative
values some -5 and less.

	nnd -> min_face_size

	The minimum size of a face (bbox) guaranteed to be detected. The larger the value, the less resources
required for face detection.

	nnd -> max_face_size

	The minimum size of a face (bbox) guaranteed to be detected.

	models -> model_instances

	The number of neural network instances (and, consequently, the number of simultaneously processed
requests) that are loaded into RAM by findface-extraction-api. Specify the number of instances from
you license. The default value (0) means that this number is equal to the number of CPU cores.
This parameter severely affects RAM consumption.

	license_ntls_server

	The ntls license server IP address and port.

	fetch -> enabled

	Enables fetching images from the Internet.

	fetch -> size_limit

	The maximum size of an Internet image to be fetched.

You will also have to enable recognition models for face features such as gender, age, emotions, glasses3, and/or beard, subject to your needs. Be sure to choose the right acceleration type for each model, matching the acceleration type of findface-extraction-api: CPU or GPU. Be aware that findface-extraction-api on CPU can work only with CPU-models, while findface-extraction-api on GPU supports both CPU- and GPU-models.

models:
 age: faceattr/age.v1.cpu.fnk
 emotions: faceattr/emotions.v1.cpu.fnk
 face: face/elderberry_576.cpu.fnk
 gender: faceattr/gender.v2.cpu.fnk
 beard: faceattr/beard.v0.cpu.fnk
 glasses3: faceattr/glasses3.v0.cpu.fnk

The following models are available:

	Face feature

	Acceleration

	Configuration file parameter

	face
(biometry)

	CPU

	face: face/elderberry_576.cpu.fnk

	GPU

	face: face/elderberry_576.gpu.fnk

	age

	CPU

	age: faceattr/age.v1.cpu.fnk

	GPU

	age: faceattr/age.v1.gpu.fnk

	gender

	CPU

	gender: faceattr/gender.v2.cpu.fnk

	GPU

	gender: faceattr/gender.v2.gpu.fnk

	emotions

	CPU

	emotions: faceattr/emotions.v1.cpu.fnk

	GPU

	emotions: faceattr/emotions.v1.gpu.fnk

	glasses3

	CPU

	glasses3: faceattr/glasses3.v0.cpu.fnk

	GPU

	glasses3: faceattr/glasses3.v0.gpu.fnk

	beard

	CPU

	beard: faceattr/beard.v0.cpu.fnk

	GPU

	beard: faceattr/beard.v0.gpu.fnk

Tip

To disable a recognition model, simply pass an empty value to a relevant parameter. Do not remove the parameter itself as in this case the system will be searching for the default model.

models:
 gender: ""
 age: ""
 emotions: ""

findface-sf-api

The findface-sf-api service implements HTTP API for the FindFace core main functionality such as face detection and face recognition (the mentioned functions themselves are provided by findface-extraction-api`). It interfaces with the biometric database powered by Tarantool via the findface-tarantool-server service, as well as with findface-extraction-api (provides face detection and face recognition) and findface-upload (provides a storage for original images and FindFace core artifacts).

To detect a face in an image, you need to send the image as a file or URL in an API request to findface-sf-api. The findface-sf-api will then redirect the request to findface-extraction-api for face detection and recognition.

Tip

You can also directly access findface-extraction-api.

If there is a configured video face detection module in the system, findface-sf-api also interfaces with the findface-facerouter service. It receives data of detected in video faces along with processing directives from findface-facerouter, and then executes the received directives, for example, saves faces into a specific database gallery.

Functionality:

	HTTP API implementation (face detection and face recognition methods, performed via findface-extraction-api).

	saving face data to the biometric database (performed via findface-tarantool-server),

	saving original images, face thumbnails and normalized face images to an NginX-powered web server (via findface-upload).

	provides interaction between all the FindFace core components.

cache:
 inmemory:
 size: 16384
 memcache:
 nodes:
 - 127.0.0.1:11211
 timeout: 100ms
 redis:
 addr: localhost:6379
 db: 0
 network: tcp
 password: ''
 timeout: 5s
 type: memcache
extraction-api:
 extraction-api: http://127.0.0.1:18666
 timeouts:
 connect: 5s
 idle_connection: 10s
 overall: 35s
 response_header: 30s
limits:
 allow-return-facen: false
 body-image-length: 33554432
 deny-networks: 127.0.0.0/8,192.168.0.0/16,10.0.0.0/8,::1/128,fe00::/8
 url-length: 4096
listen: 127.0.0.1:18411
normalized-storage:
 enabled: true
 s3:
 access-key: ''
 bucket-name: ''
 endpoint: ''
 operation-timeout: 30
 public-url: ''
 region: ''
 secret-access-key: ''
 secure: true
 type: webdav
 webdav:
 timeouts:
 connect: 5s
 idle_connection: 10s
 overall: 35s
 response_header: 30s
 upload-url: http://127.0.0.1:3333/uploads/
storage-api:
 max-idle-conns-per-host: 20
 shards:
 - master: http://127.0.0.1:8101/v2/
 slave: ''
 - master: http://127.0.0.1:8102/v2/
 slave: ''
 timeouts:
 connect: 5s
 idle_connection: 10s
 overall: 35s
 response_header: 30s

When configuring findface-sf-api, refer to the following parameters:

	Parameter

	Description

	extraction-api -> extraction-api

	IP address of the findface-extraction-api host.

	storage-api -> shards -> master

	IP address of the findface-tarantool-server master shard.

	storage-api -> shards -> slave

	IP address of the findface-tarantool-server replica shard.

	limits -> body-image-length

	The maximum size of an image in an API request, bytes.

	upload_url

	WebDAV NginX path to send original images, thumbnails and normalized face images to the
findface-upload service.

findface-tarantool-server

The findface-tarantool-server service provides interaction between the findface-sf-api service and the Tarantool-based biometric database in the following way:

Tip

See Tarantool official documentation [https://tarantool.io/en/] for details.

	From findface-sf-api, findface-tarantool-server receives data, such as information of detected in video faces, to write into the biometric database.

	By request from findface-sf-api, findface-tarantool-server performs database searches and returns search results.

To increase search speed, multiple findface-tarantool-server shards can be created on each Tarantool host. Their running concurrently leads to a remarkable increase in performance (70x-100x).

Functionality:

	saving face data to the biometric database,

	database search,

	implementation of direct API requests to the database (see Direct API Requests to Tarantool).

The findface-tarantool-server configuration is done through the /etc/tarantool/instances.enabled/<*>.lua configuration file. In a cluster environment, configuration has to be done for each shard.

--
-- Please, read the tarantool cfg doc:
-- https://tarantool.org/doc/reference/configuration/index.html#box-cfg-params
--

box.cfg{
 --port to listen, direct tarantool access
 --Only need for admin operations
 --THIS IS NOT PORT YOU NEED FOR facenapi/sf-api
 listen = '127.0.0.1:33001',

 --Directory to store data
 vinyl_dir = '/opt/ntech/var/lib/tarantool/shard-001',
 work_dir = '/opt/ntech/var/lib/tarantool/shard-001',
 memtx_dir = '/opt/ntech/var/lib/tarantool/shard-001/snapshots',
 wal_dir = '/opt/ntech/var/lib/tarantool/shard-001/xlogs',

 --Maximum mem usage in bytes
 memtx_memory = 200 * 1024 * 1024,

 checkpoint_interval = 3600*4,
 checkpoint_count = 3,

 --uncomment only if you know what you are doing!!! and don't forget box.snapshot()
 -- wal_mode = 'none',

 --if true, tarantool tries to continue if there is an error while reading a snapshot/xlog files: skips invalid records, reads as much data as possible and re-builds the file
 -- force_recovery = true,
}

pcall(function() box.schema.user.grant('guest', 'execute,read,write', 'universe') end)

dofile("/etc/ffsecurity/tnt_schema.lua")

-- host,port to bind for http server
-- this is what you need for facenapi
FindFace = require("FindFace")
FindFace.start("127.0.0.1", 8101, {
 license_ntls_server="127.0.0.1:3133",
 facen_size=576,
 meta_scheme = meta_scheme
})

When configuring findface-tarantool-server, refer to the following parameters:

	Parameter

	Description

	memtx_memory

	Maximum RAM that can be used by a Tarantool shard. Set in bytes, depending on the number of faces the
shard handles. Consult our experts by support@ntechlab.com before setting this parameter.

	force_recovery

	Enables automatic database recovery. In this case, each time an error occurs while reading a snapshot or
xlog file, Tarantool will skip invalid records, read as much data as possible, and re-build the file.

	license_ntls_server

	IP address and port of the findface-ntls license server.

	facen_size

	Feature vector size. Before editing this parameter, be sure to consult NTechLab experts.

	meta_scheme

	A database structure to store the face recognition results. The structure is created as a set of fields.
Describe each field with the following parameters: id: field id; name: field name, must be the
same as the name of a relevant face parameter; field_type: data type; default: field default
value, if a default value exceeds ‘1e14 – 1’, use a string data type to specify it, for example,
"123123.." instead of 123123...

The default database structure is passed from /etc/ffsecurity/tnt_schema.lua to the meta_scheme parameter if FindFace Enterprise Server is installed from the installer. If it is installed from the apt repository, you will have to manually set it via the configuration file.

findface-upload

The findface-upload component is an NginX-based web server used as a storage for original images, thumbnails and normalized face images which it receives from the findface-sf-api component.

By default the original images, thumbnails and normalized images are stored at /var/lib/ffupload/uploads/.

The findface-upload component is automatically configured upon installation. Custom configuration is not supported.

findface-facerouter

The findface-facerouter service sets processing directives for faces detected in video. The directives are set through custom plugins.

The findface-facerouter service accepts a face bbox and normalized image along with the original image and other data (for example, the detection date and time) from the findface-video-worker service. In general, findface-facerouter allows you to apply arbitrary face processing directives, including directly sending faces to a partner application. In the basic configuration, findface-facerouter is pre-configured to redirect faces to findface-sf-api for further processing, but you will still have to set processing directives by creating a plugin.

Functionality:

	sets processing directives for faces detected in video,

	redirects faces detected in video to findface-sf-api or other service (including a third-party application) for further processing.

The findface-facerouter configuration is done through a configuration file /etc/findface-facerouter.py.

```# main.py options:

# debug                          = False
## debug - debug mode
# host                           = ''
## host - host to listen
# port                           = 18820
## port - port to listen
# sfapi_url                      = 'http://localhost:18411'
## sfapi_url - SF-API URL
# version                        = False
## version - print version

# plugin_dir.py options:

# plugin_dir                     = ''
## plugin_dir - Plugin directory for plugin_source='dir'

# abstract_define.py options:

# plugin_source                  = 'dir'
## plugin_source - Plugin source (dir)

# log.py options:

# log_file_max_size              = 100000000
## log_file_max_size - max size of log files before rollover
# log_file_num_backups           = 10
## log_file_num_backups - number of log files to keep
# log_file_prefix                = None
## log_file_prefix - Path prefix for log files. Note that if you are running
## multiple tornado processes, log_file_prefix must be different for each of
## them (e.g. include the port number)
# log_rotate_interval            = 1
## log_rotate_interval - The interval value of timed rotating
# log_rotate_mode                = 'size'
## log_rotate_mode - The mode of rotating files(time or size)
# log_rotate_when                = 'midnight'
## log_rotate_when - specify the type of TimedRotatingFileHandler interval other
## options:('S', 'M', 'H', 'D', 'W0'-'W6')
# log_to_stderr                  = None
## log_to_stderr - Send log output to stderr (colorized if possible). By default
## use stderr if --log_file_prefix is not set and no other logging is
## configured.
# logging                        = 'info'
## logging - Set the Python log level. If 'none', tornado won't touch the
## logging configuration.





When configuring findface-facerouter, refer to the following parameters:







	Parameter

	Description





	sfapi_url

	IP address and port of the findface-sf-api host.



	plugin_dir

	List of directories with plugins to define face processing directives.









          

      

      

    

  

    
      
          
            
  
Video face detection: findface-video-manager and findface-video-worker


Note

The findface-video-worker is delivered in a CPU-accelerated (findface-video-worker) and a GPU-accelerated (findface-video-worker-gpu) packages.



In this section:



	Functions of findface-video-manager


	Functions of findface-video-worker


	Configure Video Face Detection







Functions of findface-video-manager

The findface-video-manager service is the part of the video face detection module that is used for managing the video face detection functionality.

The findface-video-manager service interfaces with findface-video-worker as follows:


	It supplies findface-video-worker with settings and the list of to-be-processed video streams. To do so, it issues a so called job, a video processing task which contains configuration settings and stream data.


	In a distributed system, it distributes video streams (jobs) across vacant findface-video-worker instances.





Note

Configuration settings passed via jobs have priority over the findface-video-manager configuration file.



The findface-video-mananger service functioning requires ETCD, third-party software that implements a distributed key-value store for findface-video-manager. In the FindFace core, ETCD is used as a coordination service, providing the video face detector with fault tolerance.

Functionality:


	allows for configuring video face detection parameters,


	allows for managing the list of to-be-processed video streams,


	implements HTTP API for video face detection management.






Functions of findface-video-worker

The findface-video-worker (or findface-video-worker-gpu) service is the part of the video face detection module, which recognizes faces in video. It can work with both live streams and files, and supports most video formats and codecs that can be decoded by FFmpeg [https://www.ffmpeg.org/general.html#Supported-File-Formats_002c-Codecs-or-Features].

The findface-video-worker service interfaces with the findface-video-manager and findface-facerouter services as follows:


	By request, findface-video-worker gets a job with settings and the list of to-be-processed video streams from findface-video-manager.


	The findface-video-worker posts extracted normalized face images, along with the full frames and meta data (such as bbox, camera ID and detection time) to the findface-facerouter service for further processing.




Functionality:


	detects faces in video,


	extracts normalized face images,


	searches for the best face snapshot,


	snapshot deduplication (only one snapshot per face detection event).




When processing video, findface-video-worker consequently uses the following algorithms:


	Motion detection. Used to reduce resource consumption. Only when the motion detector recognizes motion of certain intensity that the face tracker can be triggered.


	Face tracking. The face tracker tracks, detects and captures faces in video. It can simultaneously be working with several faces. It also searches for the best face snapshot, using an embedded neural network. After the best face snapshot is found, it is posted to findface-facerouter.




The best face snapshot can be found in one of the following modes:


	Real-time


	Offline




Real-Time Mode

In the real-time mode, findface-video-worker posts a face immediately after it appears in the camera field of view.


	If rt-perm=True, the face tracker searches for the best face snapshot within each time period equal to rt-delay and posts it to findface-facerouter.


	If rt-perm=False, the face tracker searches for the best face snapshot dynamically:


	First, the face tracker estimates whether the quality of a face snapshot exceeds a pre-defined threshold value. If so, the snapshot is posted to findface-facerouter.


	The threshold value increases after each post. Each time the face tracker gets a higher quality snapshot of the same face, it is posted.


	When the face disappears from the camera field of view, the threshold value resets to default.








By default, the real-time mode is disabled (realtime=false in the /etc/findface-video-manager.conf file).

Offline Mode

The offline mode is less storage intensive than the real-time one as in this mode findface-video-worker posts only one snapshot per track, but of the highest quality. In this mode, the face tracker buffers a video stream with a face in it until the face disappears from the camera field of view. Then the face tracker picks up the best face snapshot from the buffered video and posts it to findface-facerouter.

By default, the offline mode is enabled (overall=true in the /etc/findface-video-manager.conf file).



Configure Video Face Detection

The video face detector configuration is done through the following configuration files:


	The findface-video-manager configuration file /etc/findface-video-manager.conf:

etcd:
  dial_timeout: 3s
  endpoints: 127.0.0.1:2379
exp_backoff:
  enabled: false
  factor: 2
  flush_interval: 2m0s
  max_delay: 1m0s
  min_delay: 1s
job_scheduler_script: ''
kafka:
  enabled: false
  endpoints: 127.0.0.1:9092
listen: 127.0.0.1:18810
master:
  lease_ttl: 10
  self_url: 127.0.0.1:18811
  self_url_http: 127.0.0.1:18811
ntls:
  enabled: false
  update_interval: 1m0s
  url: http://127.0.0.1:3185/
prometheus:
  jobs_processed_duration_buckets:
  - 1
  - 30
  - 60
  - 500
  - 1800
  - 3600
  - 21600
  - .inf
router_url: http://127.0.0.1:18820/v0/frame
rpc:
 heart_beat_timeout: 4s
 listen: 127.0.0.1:18811
stream_settings:
  additional_body: []
  additional_headers: []
  api_ssl_verify: true
  api_timeout: 15000
  det_period: 8
  disable_drops: false
  draw_track: false
  fd_frame_height: -1
  ffmpeg_format: ''
  ffmpeg_params: []
  image_arg: photo
  jpeg_quality: 95
  max_candidates: 0
  max_face_size: 0
  md_scale: 0.3
  md_threshold: 0.002
  min_d_score: -1000
  min_face_size: 0
  min_score: -2
  npersons: 4
  only_norm: false
  overall: true
  parse_sei: false
  post_uniq: true
  realtime: false
  realtime_dly: 500
  realtime_post_perm: false
  roi: ''
  rot: ''
  send_track: 0
  tracker_threads: 4
  uc_max_avg_shift: 10
  uc_max_dup: 3
  uc_max_time_diff: 30
stream_settings_gpu:
  ffmpeg_format: ''
  ffmpeg_params: []
  filter_max_face_size: 8192
  filter_min_face_size: 1
  filter_min_quality: -2
  imotion_threshold: 0
  jpeg_quality: 95
  normalized_only: false
  overall_only: false
  play_speed: -1
  realtime_post_every_interval: false
  realtime_post_interval: 1
  roi: ''
  rot: ''
  router_body: []
  router_headers: []
  router_timeout_ms: 15000
  router_verify_ssl: true
  start_stream_timestamp: 0
  use_stream_timestamp: false





When configuring findface-video-manager, refer to the following parameters:







	Option

	Description





	router_url

	IP address and port of the findface-facerouter host to receive detected faces from findface-video-worker. Default value: http://127.0.0.1:18820/v0/frame.



	etcd -> endpoints

	IP address and port of the etcd service. Default value: 127.0.0.1:2379.



	ntls -> enabled

	If true, findface-video-manager will send a job to findface-video-worker only if the total number of processed cameras does not exceed the allowed number of cameras from the license. Default value: false.



	ntls -> url

	IP address and port of the findface-ntls host. Default value: http://127.0.0.1:3185/.






You can also configure the following parameters:


Note

In the stream_settings(-gpu) section of the file, you will find settings common to all video streams. To make settings of a certain stream, pass them in a job, a video processing task that findface-video-manager issues to findface-video-worker (see Job Object).









	Option

	Description





	ffmpeg_format

	Pass FFMPEG format (mxg, flv, etc.) if it cannot be detected automatically.



	ffmpeg_params

	List of a video stream ffmpeg options with their values as a key=value array: [“rtsp_transpotr=tcp”, .., “ss=00:20:00”]. Check out the FFmpeg web site [https://trac.ffmpeg.org] for the full list of options. Default value: options not specified.



	md_threshold, imotion_threshold

	Minimum motion intensity to be detected by the motion detector. The threshold value is to be fitted empirically. Empirical units: zero and positive rational numbers. Milestones: 0 = detector disabled, 0.002 = default value, 0.05 = minimum intensity is too high to detect motion.



	md_scale

	Video frame scaling coefficient for the motion detector, relative to the original size from 0 to 1. Scale down in the case of high resolution cameras, or close up faces, or if the CPU load is too high, to reduce the system resources consumption. Make sure that the scaled face size exceeds the min-face-size value. Default value: 1 (original size).



	fd_frame_height

	Video frame height for the face tracker, in pixels. Scale down in the case of high resolution cameras, or close up faces, or if the CPU load is too high, to reduce the system resources consumption. Make sure that the scaled face size exceeds the min-face-size value. Default value: -1 (negative values corresponds to the original size). Optimal value to reduce load: 640-720.



	uc_max_time_diff

	Only if post_uniq: true (face deduplication enabled). Maximum time period in seconds during which a number of similar faces are considered as belonging to one person. Default value: 30.



	uc_max_dup

	Only if post_uniq: true (face deduplication enabled). Maximum number of faces during the uc_max_time_diff period that is posted for a person. Default value: 3.



	uc_max_avg_shift

	Only if post_uniq: true (face deduplication enabled). Distance in pixels within which a number of similar faces are considered as belonging to one person. Default value: 10.



	realtime

	Enables the real-time mode for the best face search. Default value: false.



	npersons

	Maximum number of faces simultaneously tracked by the face tracker. This parameter severely affects performance. Default value: 4.



	disable_drops

	Enables posting all appropriate faces without drops. By default, if findface-video-worker does not have enough resources to process all frames with faces, it drops some of them. If this option is active, findface-video-worker puts odd frames on the waiting list to process them later. Default value: false.



	tracker_threads

	Number of tracking threads for the face tracker. This value should be less or equal to the npersons value. We recommend you to set them equal. If the number of tracking threads is less than the maximum number of tracked faces, resource consumption is reduced but so is the tracking speed. Default value: 1.



	image_arg

	Name of the argument containing a bbox with a face, in an API request. Default value: photo.



	additional_headers

	Additional header fields in a POST request when posting a face: [“key = value”]. Default value: headers not specified.



	additional_body

	Additional body fields in the request body when posting a face: [“key = value”]. Default value: body fields not specified.



	api_timeout

	Timeout for a findface-facerouter response to a findface-video-worker API request, in milliseconds. If the timeout has expired, the system will log an error. Default value: 15000.



	api_ssl_verify, router_verify_ssl

	Enables a https certificate verification when findface-video-worker and findface-facerouter interact over https. Default value: true. If false, a self-signed certificate can be accepted.



	post_uniq

	Enables face deduplication, i.e. posting only a certain number of faces belonging to one person, during a certain period of time. In this case, if findface-video-worker posts a face to findface-facerouter and then tracks another one within the time period uc_max_time_diff, and the distance between the two faces doesn’t exceed uc_max_avg_shift, findface-video-worker estimates their similarity. If the faces are similar and the total number of similar faces during the uc_max_time_diff period does not exceed the number uc_max_dup, findface-video-worker posts the other face. Otherwise, the other face is not posted. Default value: true.



	min_score, filter_min_quality

	Minimum threshold value for a face image quality. A face is posted if it has better quality. The threshold value is to be fitted empirically. Empirical units: negative rational numbers to zero. Milestones: 0 = high quality faces, -1 = good quality, -2 = satisfactory quality, -5 = face recognition maybe inefficient. Default value: -7.



	min_d_score

	Maximum deviation of a face from its frontal position. A face is posted if its deviation is less than this value. The deviation is to be fitted empirically. Empirical units: negative rational numbers to zero. Milestones: -3.5 = large face angles, face recognition may be inefficient, -2.5 = satisfactory deviation, -0.05 = close to the frontal position, 0 = frontal face. Default value: -1000.



	realtime_dly, realtime_post_interval

	Only for the real-time mode. If realtime_post_perm=True, defines the time period in milliseconds within which the face tracker picks up the best snapshot and posts it to findface-facerouter. If realtime_post_perm=False, defines the minimum time period between 2 posts of the same face with increased quality. Default value: 500.



	realtime_post_perm, realtime_post_every_interval

	Only for the realtime mode. Post best snapshots obtained within each realtime_dly time period. If false, search for the best snapshot dynamically and send snapshots in order of increasing quality. Default value: false.



	rot

	Enables detecting and tracking faces only inside a clipping rectangle WxH+X+Y. You can use this option to reduce findface-video-worker load. Default value: rectangle not specified.



	roi

	Enable posting faces detected only inside a region of interest WxH+X+Y. Default value: region not specified.



	draw_track

	Enables drawing a face motion track in a bbox. Default value: false.



	send_track

	Enables posting a face motion track as array of the bbox center coordinates. As the send_track value, specify the number of dots in the motion track. Default value: 0 (array not posted).



	min_face_size, filter_min_face_size

	Minimum size of a face in pixels. Undersized faces are not posted. Default value: 0 (filter disabled).



	max_face_size, filter_max_face_size

	Maximum size of a face in pixels. Oversized faces are not posted. Default value: 0 (filter disabled).



	overall

	Enables the offline mode for the best face search. Default value: true.



	only_norm

	Enable posting only normalized face images without full frames. Default value: false.



	jpeg_quality

	Quality of an original frame JPEG compression, in percents. Default value: 95%.



	use_stream_timestamp

	If true, retrieve and post timestamps from a video stream. If false, post the actual date and time.








	If you opt for the CPU-accelerated package findface-video-worker, use the /etc/findface-video-worker.ini configuration file:

ntls-addr=127.0.0.1:3133
mgr-static=127.0.0.1:18811
capacity=10
#mgr-exec=shell command with arguments





If you opt for the GPU-accelerated package findface-video-worker-gpu, use the /etc/findface-video-worker-gpu.ini configuration file.

## cuda device number
device_number = 0

## read streams from file, do not use VideoManager
input =

## exit on first finished job, only when --input specified
exit_on_first_finished = false

## models directory
models_dir = /usr/share/findface-gpudetector/models

## batch size
batch_size = 1

## http server port for metrics, 0=do not start server
metrics_port = 0

## resize scale, 1=do not resize
resize_scale = 1.0

## maximum number of streams
capacity = 30

## command to obtain videomanager's grpc ip:port
mgr_cmd =

## videomanager grpc ip:port
mgr_static = 127.0.0.1:18811

## ntls server ip:port
ntls_addr = 127.0.0.1:3133

## debug: save faces to dir
save_dir =

## minimum face size
min_face_size = 60

## preinit detector for specified resolutions: "640x480;1920x1080"
resolutions =

# worker labels: "k=v;group=enter"
labels =

## use timestamps from SEI packet
use_time_from_sei = false

#------------------------------
[streamer]
#------------------------------
## streamer server port, 0=disabled
port = 9999

## streamer url - how to access this worker on streamer_port
url = ws://127.0.0.1:9999/stream/

#------------------------------
[liveness]
#------------------------------
## path to liveness fnk
fnk =

## liveness threshold
threshold = 0.945

## liveness internal algo param
interval = 1.0

## liveness internal algo param
stdev_cnt = 1

#------------------------------
[video_decoder]
#------------------------------
## decode video on cpu
cpu = false

#------------------------------
[send]
#------------------------------
## posting faces threads
threads = 8

## posting faces maximum queue size
queue_limit = 256

#------------------------------
[tracker]
#------------------------------
## max face miss duration, sec
miss_interval = 1.0

## overlap threshold
overlap_threshold = 0.25```





When configuring findface-video-worker/findface-video-worker-gpu, refer to the following parameters:







	Parameter

	Description





	ntls-addr

	IP address and port of the findface-ntls host.



	mgr-static

	IP address of the findface-video-manager host to provide
findface-video-worker with settings and the list of to-be-processed streams.



	capacity

	Maximum number of video streams to be processed by findface-video-worker.



	mgr-exec

	(Optional, instead of the mgr-static parameter) A script to describe
dynamic IP address of the   findface-video-manager host.



	fnk

	(Only for GPU, optional). Path to the face liveness detector.














          

      

      

    

  

    
      
          
            
  
findface-ntls

The findface-ntls service is to be installed on a designated host to verify the FindFace license. For verification purposes, findface-ntls uses one of the following sources:


	Ntech Lab global license center if you opt for the online licensing, direct or via a proxy server.


	USB dongle if you opt for the on-premise licensing.




Use the main web interface to manage findface-ntls:


	view the list of purchased features,


	view license limitations,


	upload a license file,


	view the list of currently active components.




The following components are licensable:


	findface-tarantool-server,


	findface-extraction-api,


	findface-video-manager,


	findface-video-worker.





Important

After connection between findface-ntls and a licensable component, or between findface-ntls and the global license server is broken, you will have 6 hours to restore it before the licensable components will be automatically stopped.



The findface-ntls configuration is done through a configuration file /etc/findface-ntls.cfg.

# Listen address of NTLS server where services will connect to.
# The format is IP:PORT
# Use 0.0.0.0:PORT to listen on all interfaces
# This parameter is mandatory and may occur multiple times
# if you need to listen on several specific interfaces or ports.
listen = 127.0.0.1:3133


# Directory with license files.
# NTLS use most recently generated one.
# Note: "recentness" of a license file is detected not by
#       mtime/ctime but from its internal structure.
#
# This parameter is mandatory and must occur exactly once.
license-dir = /opt/ntech/license

# You can specify proxy which NTLS will use to access
# global license server. The syntax is the same that is used by curl.
# Proxy is optional
#proxy = http://192.168.1.1:12345

# This is bind address for NTLS web-interface.
# Note: there're no authorization or access restriction mechanisms
#       in NTLS UI. If you need one, consider using nginx as proxy
#       with .htaccess / ip-based ACLs.
# This parameter may be specified multiple times.
ui = 127.0.0.1:3185





When configuring findface-ntls, refer to the following parameters:







	Parameter

	Description





	listen

	IP address from which licensable services access findface-ntls.
To allow access from any IP address, use 0.0.0.0:3133.



	license_dir

	Directory to store a license file.



	proxy

	(Optional) IP address and port of your proxy server.



	ui

	IP address from which accessing the findface-ntls web interface must
originate. To allow access from any remote host, set “0.0.0.0”.









          

      

      

    

  

    
      
          
            
  
Installation File

FindFace Enterprise Server installation configuration is automatically saved to a file /tmp/<findface-installer-*>.json. You can edit this file and use it to install FindFace Enterprise Server on other hosts without having to answer the installation questions again.


Tip

See Install from Console Installer to learn more about the FindFace Enterprise Server installer.




Important

Be sure to remove fields *.config, exp_ip, and int_ip before installing FindFace Enterprise Server on a host with a different IP address.



{
  "ignore_lowmem": true,
  "findface-security.config": {
    "EXTERNAL_ADDRESS": "http://172.20.77.78"
  },
  "inter_ip.bind": "127.0.0.1",
  "memcached.config": {
    "listen_host": "127.0.0.1",
    "max_memory": 1024,
    "item_size": 16
  },
  "findface-video-worker.config": {
    "FKVD_WRK_CAP": "10",
    "FKVD_NTLS_ADDR": "127.0.0.1:3133",
    "streamer": [
      "port = 18999",
      "url = ws://127.0.0.1:18999/stream/"
    ],
    "FKVD_MGR_ADDR": "127.0.0.1:18811"
  },
  "ext_ip.bind": "0.0.0.0",
  "findface-data.models": [
    "./findface-data-age.v1-cpu_3.0.0_amd64.deb",
    "./findface-data-age.v1-gpu_3.0.0_amd64.deb",
    "./findface-data-beard.v0-cpu_3.0.0_amd64.deb",
    "./findface-data-beard.v0-gpu_3.0.0_amd64.deb",
    "./findface-data-elderberry-160-cpu_3.0.0_amd64.deb",
    "./findface-data-elderberry-160-gpu_3.0.0_amd64.deb",
    "./findface-data-elderberry-576-cpu_3.0.0_amd64.deb",
    "./findface-data-elderberry-576-gpu_3.0.0_amd64.deb",
    "./findface-data-emotions.v1-cpu_3.0.0_amd64.deb",
    "./findface-data-emotions.v1-gpu_3.0.0_amd64.deb",
    "./findface-data-gender.v2-cpu_3.0.0_amd64.deb",
    "./findface-data-gender.v2-gpu_3.0.0_amd64.deb",
    "./findface-data-glasses3.v0-cpu_3.0.0_amd64.deb",
    "./findface-data-glasses3.v0-gpu_3.0.0_amd64.deb",
    "./findface-data-liveness.v1-gpu_3.0.0_amd64.deb"
  ],
  "findface-video-worker.variant": "cpu",
  "inter_ip.advertised": "127.0.0.1",
  "product": "security",
  "findface-ntls.config": {
    "NTLS_LISTEN": "127.0.0.1:3133",
    "NTLS_LICENSE_DIR": "/opt/ntech/license",
    "NTLS_LISTEN_UI": "127.0.0.1:3185"
  },
  "ext_ip.advertised": "172.20.77.78",
  "tnt_instances": 2,
  "findface-facerouter.config": {
    "port": "18820",
    "host": "127.0.0.1",
    "plugin_source": "dir",
    "plugin_dir": "/etc/findface-facerouter-plugins",
    "sfapi_url": "http://127.0.0.1:18411"
  },
  "findface-sf-api.config": {
    "storage-api": {
      "shards": [
        {
          "slave": "",
          "master": "http://127.0.0.1:8101/v2/"
        },
        {
          "slave": "",
          "master": "http://127.0.0.1:8102/v2/"
        }
      ]
    },
    "listen": "127.0.0.1:18411",
    "extraction-api": {
      "extraction-api": "http://127.0.0.1:18666"
    }
  },
  "type": "stand-alone",
  "findface-extraction-api.variant": "cpu",
  "findface-video-manager.config": {
    "rpc": {
      "listen": "127.0.0.1:18811"
    },
    "listen": "127.0.0.1:18810",
    "master": {
      "self_url": "127.0.0.1:18811",
      "self_url_http": "127.0.0.1:18811"
    },
    "ntls": {
      "url": "http://127.0.0.1:3185/",
      "enabled": false
    }
  },
  "components": [
    "findface-data",
    "memcached",
    "etcd",
    "redis",
    "postgresql",
    "findface-ntls",
    "findface-extraction-api",
    "findface-sf-api",
    "findface-upload",
    "findface-video-manager",
    "findface-video-worker",
    "findface-security",
    "findface-tarantool-server"
  ],
  "findface-tarantool-server.config": {
    "shard-002": {
      "TNT_LISTEN": "127.0.0.1:33002",
      "TNT_DATA_DIR": "/opt/ntech/var/lib/tarantool/shard-002",
      "TNT_META_SCHEME": "meta_scheme",
      "TNT_FF_LISTEN_PORT": "8102",
      "TNT_FF_LISTEN_IP": "127.0.0.1",
      "TNT_EXTRA_LUA": "\ndofile(\"/etc/ffsecurity/tnt_schema.lua\")\n",
      "TNT_FF_NTLS": "127.0.0.1:3133"
    },
    "shard-001": {
      "TNT_LISTEN": "127.0.0.1:33001",
      "TNT_DATA_DIR": "/opt/ntech/var/lib/tarantool/shard-001",
      "TNT_META_SCHEME": "meta_scheme",
      "TNT_FF_LISTEN_PORT": "8101",
      "TNT_FF_LISTEN_IP": "127.0.0.1",
      "TNT_EXTRA_LUA": "\ndofile(\"/etc/ffsecurity/tnt_schema.lua\")\n",
      "TNT_FF_NTLS": "127.0.0.1:3133"
    }
  },
  "findface-extraction-api.config": {
    "extractors": {
      "instances": 1,
      "models": {
        "emotions": "",
        "age": "",
        "gender": "",
        "face": "face/elderberry_576.cpu.fnk"
      }
    },
    "nnd": {
      "quality_estimator": true
    },
    "listen": "127.0.0.1:18666",
    "license_nils_server": "127.0.0.1:3133"
  }
}





To automatically install FindFace Enterprise Server on another host without answering the installation questions, use the following command:

sudo ./findface-security-2.1.0-server-3.1.0.run -f /tmp/<findface-installer-*>.json








          

      

      

    

  

    
      
          
            

   Python Module Index


   
   f | 
   n | 
   o
   


   
     		 	

     		
       f	

     
       	[image: -]
       	
       facerouter	
       

     
       	
       	   
       facerouter.plugin	
       

     		 	

     		
       n	

     
       	[image: -]
       	
       ntech	
       

     
       	
       	   
       ntech.sfapi_client.client	
       

     
       	
       	   
       ntech.sfapi_client.filters	
       

     
       	
       	   
       ntech.sfapi_client.gallery	
       

     		 	

     		
       o	

     
       	
       	
       objects	
       

   



          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | S
 | U
 


_


  	
      	__init__() (ntech.sfapi_client.filters.Detection method)

      
        	(ntech.sfapi_client.filters.Face method)


      


  





A


  	
      	add() (ntech.sfapi_client.gallery.Gallery method)


  





B


  	
      	BBox (class in objects)


  





C


  	
      	Client (class in ntech.sfapi_client.client)


  

  	
      	create() (ntech.sfapi_client.gallery.Gallery method)


  





D


  	
      	delete() (ntech.sfapi_client.gallery.Gallery method)


      	detect() (ntech.sfapi_client.client.Client method)


  

  	
      	Detection (class in ntech.sfapi_client.filters)


      	drop() (ntech.sfapi_client.gallery.Gallery method)


  





F


  	
      	Face (class in ntech.sfapi_client.filters)


  

  	
      	facerouter.plugin (module)


      	Filter (class in ntech.sfapi_client.filters)


  





G


  	
      	Gallery (class in ntech.sfapi_client.gallery)


      	gallery() (ntech.sfapi_client.client.Client method)


  

  	
      	get() (ntech.sfapi_client.gallery.Gallery method)


      	gte() (ntech.sfapi_client.filters.Id class method)

      
        	(ntech.sfapi_client.filters.Meta class method)


      


  





I


  	
      	Id (class in ntech.sfapi_client.filters)


  





L


  	
      	list() (ntech.sfapi_client.gallery.Gallery method)


  

  	
      	lte() (ntech.sfapi_client.filters.Id class method)

      
        	(ntech.sfapi_client.filters.Meta class method)


      


  





M


  	
      	Meta (class in ntech.sfapi_client.filters)


  





N


  	
      	ntech.sfapi_client.client (module)


  

  	
      	ntech.sfapi_client.filters (module)


      	ntech.sfapi_client.gallery (module)


  





O


  	
      	objects (module)


      	objects.DetectFace (class in objects)


      	objects.DetectResponse (class in objects)


      	objects.Face (class in objects)


  

  	
      	objects.FaceId (class in objects)


      	objects.ListResponse (class in objects)


      	oneof() (ntech.sfapi_client.filters.Id class method)

      
        	(ntech.sfapi_client.filters.Meta class method)


      


  





P


  	
      	Plugin (class in facerouter.plugin)


      	preprocess()

      
        	(facerouter.plugin.Plugin method)


      


  

  	
      	process()

      
        	(facerouter.plugin.Plugin method)


      


  





S


  	
      	serialize() (ntech.sfapi_client.filters.Filter method)


      	sfapi_client.SFApiMalformedResponseError (class in ntech.sfapi_client.filters)


      	sfapi_client.SFApiRemoteError (class in ntech.sfapi_client.filters)


  

  	
      	shutdown()

      
        	(facerouter.plugin.Plugin method)


      


      	subset() (ntech.sfapi_client.filters.Meta class method)


  





U


  	
      	update() (ntech.sfapi_client.gallery.Gallery method)


  







          

      

      

    

  

    
      
          
            
  
Face Normalization

Detected faces of the same person in different images vary in angle, size, brightness, background, etc. Those features are independent of face features and will significantly affect the recognition speed and efficiency. To solve the problem and improve the face recognition rate, each face detected by FindFace Enterprise Server is applied a face normalization algorithm. The algorithm aims to reduce the effect of useless, interferential and redundant information such as background, hair, cloth etc. To correct the angle position, it detects the position of pupils in the face image using geometric relation between the face and the eyes and normalizes the orientation of the face image.




          

      

      

    

  

    
      
          
            
  
Retrieve Licensing Information

To retrieve the FindFace Enterprise Server licensing information and findface-ntls status, execute on the findface-ntls host console:

curl http://localhost:3185/license.json -s | jq





The response will be given in JSON. One of the most significant parameters is last_updated. It indicates in seconds how long ago the local license has been checked for the last time.

Interpret the last_updated value as follows:



	[0, 5] — everything is alright.


	(5, 30] — there may be some problems with connection, or with the local drive where the license file is stored.


	(30; 120] — almost certainly something bad happened.


	(120; ∞) — the licensing source response has been timed out. Take action.


	"valid": false: connection with the licensing source was never established.







curl http://localhost:3185/license.json -s | jq
{
  "name": "NTLS",
  "time": 1520844897,
  "type": "offline (extended)",
  "license_id": "001278983",
  "generated": 487568400,
  "last_updated": 4,
  "valid": {
    "value": true,
    "description": ""
  },
  "source": "/ntech/license/001278983.lic",
  "limits": [
    {
      "type": "time",
      "name": "end",
      "value": 25343
    },
    {
      "type": "number",
      "name": "faces",
      "value": 90071,
      "current": 230258
    },
    {
      "type": "number",
      "name": "cameras",
      "value": 9007,
      "current": 3
    },
    {
      "type": "number",
      "name": "extraction_api",
      "value": 900,
      "current": 8
    },
    {
      "type": "boolean",
      "name": "gender",
      "value": true
    },
    {
      "type": "boolean",
      "name": "age",
      "value": true
    },
    {
      "type": "boolean",
      "name": "emotions",
      "value": true
    },
    {
      "type": "boolean",
      "name": "fast-index",
      "value": true
    }
  ],
  "services": [
    {
      "name": "video-worker",
      "ip": "127.0.0.1:58970"
    },
    {
      "name": "FindFace-tarantool",
      "ip": "127.0.0.1:58978"
    },
    {
      "name": "findface-extraction-api",
      "ip": "127.0.0.1:52376"
    }
  ]
}








          

      

      

    

  

    
      
          
            
  
Prepare Packages for Installation

To prepare the distributable packages for installation, do the following:


	Unpack the package with components on each designated host.

sudo dpkg -i <findface-repo>.deb







	Add a signature key on each designated host.

sudo apt-key add /var/findface-repo/public.key
sudo apt-get update







	Unpack the packages with models (face, gender, age, emotions, etc.). In the cluster environment, models are installed only on the findface-extraction-api hosts.

sudo dpkg -i findface-data*












          

      

      

    

  _static/ajax-loader.gif





_static/architecture.png
Ntech Lab

Global License
Server

FindFace Core

findface-extraction-
japi.service

faces biometric sample

v_ v v

findface-ntis.service

optional

Video face detection (findface-

Video stream

findface-st-api service fndface sorvice
i
o—— Jobs/statistics
[memcached (‘;‘;}gxs)
j = |
faces/frames
Video face detection
[findfacevideo-
blometric samplel
otudats faces (jpg/png) frames (jpg/png) ‘worker.service)
v
findface tarantool- T
server findface-upload
(=
farantool DB Naink
= =2

[5 Application module

(optional)

R






_images/architecture.png
Ntech Lab

Global License
Server

FindFace Core

findface-extraction-
japi.service

faces biometric sample

v_ v v

findface-ntis.service

optional

Video face detection (findface-

Video stream

findface-st-api service fndface sorvice
i
o—— Jobs/statistics
[memcached (‘;‘;}gxs)
j = |
faces/frames
Video face detection
[findfacevideo-
blometric samplel
otudats faces (jpg/png) frames (jpg/png) ‘worker.service)
v
findface tarantool- T
server findface-upload
(=
farantool DB Naink
= =2

[5 Application module

(optional)

R






_static/add_photo.png
Add photo

From URL

From file | Choose Fie | Mic:

From camera  FaceTime HD Cam( Capture a photo






_static/cameras.png
@ Home / Camera management

Cameras

FindFace Server

B Galleries

Faces

Image

& Persons

®( Camera managemer

& Photo processing

© Video processing

* Logout

bb157830-593-11e8-8
42a-93050a77289¢

d3b09a50-5e93-11e8-8
42a-93050a77289¢

Detector

detect

detect

Enabled

(o]

@

Meta

openspace

entrance





_static/comment-bright.png





_static/batch_upload.png
Home / Faces management with fiters

Add photo

v selectall Delete selecty 4 Edit selected »

Thumb Photo Id Person  Camera  Friend Date Meta

Filters

Gallery | default

Friend | Friend

39093969545 2018-05-24
49558 24 entrence 03:43:04
o Person | Person






_static/comment-close.png





_static/comment.png





_static/down-pressed.png





_static/down.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to FindFace Enterprise Server’s documentation!
        


        		
          Get Started
        


        		
          Architecture
          
            		
              Architectural Elements
            


            		
              Single- and Multi-Host Deployment
            


            		
              CPU- and GPU-acceleration
            


          


        


        		
          System Requirements
          
            		
              Basic Configuration
            


            		
              Benchmark Results
              
                		
                  Testing Setup
                


                		
                  Resource Consumption: findface-extraction-api and findface-extraction-api-gpu
                


                		
                  Performance: findface-extraction-api and findface-extraction-api-gpu
                


                		
                  Performance: findface-video-worker and findface-video-worker-gpu
                


              


            


            		
              Examples of Hardware Configuration
              
                		
                  CPU-based Server
                


                		
                  GPU-based Server
                


              


            


          


        


        		
          Deploy FindFace Enterprise Server
          
            		
              Install from Console Installer
            


            		
              Install Step-by-Step
              
                		
                  Install APT Repository
                


                		
                  Prerequisites
                


                		
                  Provide Licensing
                


                		
                  Deploy findface-extraction-api
                


                		
                  Deploy findface-tarantool-server
                


                		
                  Deploy findface-upload
                


                		
                  Deploy findface-sf-api
                


                		
                  Deploy findface-facerouter
                


                		
                  Deploy Video Face Detection
                


              


            


            		
              Additional findface-video-worker deployment on remote hosts
            


            		
              Neural Network Models Installation
            


            		
              Test Requests
              
                		
                  How to Pretty-Print Responses
                


                		
                  Create Gallery
                


                		
                  List Galleries
                


                		
                  Detect Face in Image
                


                		
                  Retrieve Detection Result from memcached
                


                		
                  Add Face from memcached to Gallery
                


                		
                  List Gallery Faces
                


                		
                  Search Face in Gallery
                


                		
                  Compare Faces
                


              


            


            		
              Fast Index
            


          


        


        		
          Biometric API
          
            		
              How to Use Biometric API
              
                		
                  Endpoint
                


                		
                  API Version
                


                		
                  Face as API Object
                


                		
                  Parameters Format
                


                		
                  How to Use Examples
                


                		
                  Limits
                


                		
                  Error Reporting
                


              


            


            		
              Biometric API Methods
              
                		
                  Detect Face in Image
                


                		
                  Retrieve Detection Result from memcached
                


                		
                  Create Detection Result out of findface-extraction-api Response
                


                		
                  List Database Galleries
                


                		
                  Create Database Gallery
                


                		
                  Retrieve Gallery Details
                


                		
                  Delete Gallery
                


                		
                  Add Face from memcached to Database
                


                		
                  Retrieve Face from Gallery
                


                		
                  Delete Face from Gallery
                


                		
                  Update Face Metadata in Gallery
                


                		
                  Compare Faces
                


                		
                  Retrieve Data from Gallery. Face Search
                


              


            


          


        


        		
          Video Face Detection API
          
            		
              How to Use Video Face Detection API
              
                		
                  Endpoint
                


                		
                  Job Object
                


                		
                  Error Reporting
                


              


            


            		
              Video Face Detection API Methods
              
                		
                  Create Job
                


                		
                  List Existing Jobs
                


                		
                  Retrieve Job Parameters
                


                		
                  Delete Job
                


                		
                  Update Job
                


                		
                  Restart Job
                


              


            


          


        


        		
          Set Face Processing Directives
          
            		
              Configure findface-facerouter to Use Plugins
            


            		
              Basics
              
                		
                  Plugin Architecture
                


                		
                  The preprocess method
                


                		
                  The process method
                


                		
                  The shutdown method
                


              


            


            		
              Classes and Methods
              
                		
                  Basic Classes
                


                		
                  Object Classes
                


                		
                  Face Detection and Gallery Management
                


                		
                  Filters for Database Search
                


                		
                  Display Error Messages
                


              


            


            		
              Examples
            


          


        


        		
          Advanced Features
          
            		
              Direct API requests to findface-extraction-api
              
                		
                  API Requests
                


                		
                  API Response Format
                


                		
                  Examples
                


              


            


            		
              Shard Galleries Statistics
              
                		
                  List Galleries
                


                		
                  Get Gallery Information
                


              


            


            		
              Direct API Requests to Tarantool
              
                		
                  General Information
                


                		
                  Add Face
                


                		
                  Remove Face
                


                		
                  Face Search
                


                		
                  Edit Face Metadata and Feature Vector
                


                		
                  List Galleries
                


                		
                  Get Gallery Info
                


                		
                  Create Gallery
                


                		
                  Remove Gallery
                


              


            


            		
              Hacks for findface-tarantool-server
              
                		
                  Additional Configuration Parameters
                


                		
                  Soft Deletion Mode
                


                		
                  Tarantool Replication
                


              


            


            		
              Real-time Face Liveness Detection
            


            		
              Configure Multiple Video Cards Usage
              
                		
                  Allocate findface-video-worker-gpu to Additional Video Card
                


              


            


          


        


        		
          Maintenance and Troubleshooting
          
            		
              Checking Component Status
            


            		
              Analyze Log Files
            


            		
              Troubleshoot Licensing and findface-ntls
              
                		
                  Retrieve Licensing Information
                


              


            


            		
              Automatic Tarantool Recovery
            


          


        


        		
          Appendices
          
            		
              Neural Network Models
            


            		
              Components in Depth
              
                		
                  findface-extraction-api
                


                		
                  findface-sf-api
                


                		
                  findface-tarantool-server
                


                		
                  findface-upload
                


                		
                  findface-facerouter
                


                		
                  Video face detection: findface-video-manager and findface-video-worker
                


                		
                  findface-ntls
                


              


            


            		
              Installation File
            


          


        


      


    
  

_static/deploy_en.png
Partner dbpiication






_static/deploy_ru.png
Partner dbpiication






_static/file.png





_static/gae.png
FindFace Server

& Galleries

= Faces

& Persons

® Camera management

& Photo processing

© Video processing

* Logout

y_
A 4

Home

Photo processing | Gae

From URL

From file

From camera

Choose File | Michasl. Corleone.jpg

FaceTime HD Cam¢

Capture a photo

m o
Selectfeatures mﬂm

Detect features

Gender male

Age 40245613

Emotions [ "neutral’, "surprise" ]





_static/ffui.png
B

Galleries

Create and delete galleries.

Camera management

Create and manage cameras.
Enable and disable detectors.

FINDFACE

Faces

View faces.
Add faces.
Batch add faces from image files or directories.

b

Photo processing

Detect faces.
Detect gender, age, emotions.
Search face in database.
Compare faces.

Persons

View and filter persons.

>

Video processing

Search face in database.
Enroll faces.
Detect gender, age, emotions.
Support video rtsp streams, video files, web cameras.






_static/galleries.png
@ Home / Gallery management
Create gallery:

FindFace Server
Faces Delete gallery:
default
& Persons

® Camera management

& Photo processing

© Video processing

 Logout





_static/compare.png
Home | Photo processing

FindFace Server

B Galleries

Faces

& Persons

® Video processing

® Logout

From URL From URL

From file | BuGepure gain _ filename jpg From file | Buepure oaitn | sample2.pg

From camera | Camera 0 Capture a photo From camera | Camera 0 Capture a photo





_static/report.png
FindFace Demo Report. Part 1 of 1. Events 3 of 3.

2017-1101 1523091 found

97% Gender: male
Age: 3474
Emotions: neutral, happy

Known: 0.97
1d: 3864419670722472

2017-11-01 152327 1 found

| 95% Gender: male
| Age: 43.46
Emotions: neutral, happy

Known: 0.95
1d: 3864419598335087

2017-11-01 1523:31 | found

97% Gender: male
Age: 32.58
Emotions: neutral, happy

Known: 0.97
1d: 3864419606482186






_static/persons.png
FindFace Server

B Galleries

Faces

® Camera management

& Photo processing

© Video processing

% Logout

Home

1d

Persons list

Thumb

Meta

autogenerated

autogenerated

= |

Updated

2018-05-23
2113:28

2018-05-23
2113:30






_static/plus.png





_static/up.png





_static/video.png
Home / Video proce:

> Detector running with PID 61393

v Storage settings

Storage

Skip “notfound"
events

Saved events

Storage limit

100000
* Older events will be deleted when exceed the limits

** Limits is not guaranteed

Events 3/100000 Image size

2017-11-0115:23:31 | found

‘ . - .
Known: 0.97
d: 3864419606482186

2017-11-0115:23:27 | found

‘ ‘95%.

Known: 0.95
d: 3864419598335087

2017-11-0115:23:09 | found
‘ . - .
Known; 0.97
d: 3864419670722472

10 fpage

Source

Gender: male
Age: 32.58
Emotions: neutral, happy

Gender: male
Age: 43.46
Emotions: neutral, happy

Gender: male
Age: 34.74
Emotions: neutral, happy






_static/up-pressed.png





_static/meta.png
Home | Batch upload

Gallery | default Select multiple files | ~ Select directory Gender S
Meta | Prefix File| Postfix MF selector | All Upload

Emotions

&

All
Files selected: 2055 Uploaded: 0 Failed: 0 .

Biggest

Reject

File size status

€ 04f67af3148b654326390b06d1001ce5.jpg 8293
€) 04f67af3148b654326390b06d100300e.jog 10398
€ 04f67af3148b654326390b06d1004c96.jpg 3053
€) 04f67af3148b654326390b06d1005eb8.jpg 8014
€ 04f67af3148b654326390b06d100697¢.jpg 12599
€ 04f67af3148b654326390b06d1007409.jpg 3394
€ 04f67af3148b654326390b06d1008ca3.jpg 12341
€) 04f67af3148b654326390b06d1006651.jpg 7163





_static/minus.png





_static/visual.png
Update camera

“1d

Meta

surd

* Detector

Advanced

entrance

‘ http://172.17.45.87/his/entrance.m3u8

‘ default

Region of tracking (ROT):

Region of interest (ROI):

Width

Width

Update camera

hange ROI/ROT v

Height

Height






