Enable Body and Body Attribute Recognition
FindFace Multi allows you to recognize individual human bodies and body attributes.
The body attributes are as follows:
gender:
male;
female;
age (by group):
0-16 years;
17-35 years;
36-50 years;
50+ years;
clothing type:
generalized category of upper body wear: long sleeves, short sleeves, no sleeve;
specific type of upper body wear: jacket, coat, sleeveless vest, sweatshirt, T-shirt, shirt, dress;
type of lower body wear: pants, skirt, shorts, nondescript;
type of headgear: hat/cap, hood/headscarf, none;
clothing color (top/bottom);
presence of personal protective equipment (PPE):
PPE item: vest, helmet;
PPE color;
PPE recognition score;
whether a person has a bag:
on the back;
in hand(s);
a person’s fall;
smoking;
phone usage (talking/holding in hands).
Recognition of human bodies and their attributes can be configured at the installation level. This section describes how to enable body and body attribute recognition in case this step has been skipped during installation.
To enable recognition of human bodies and their attributes, do the following:
Specify neural network models for body object and body attribute recognition in the
/opt/findface-multi/configs/findface-extraction-api/findface-extraction-api.yaml
configuration file.Important
Be sure to choose the right acceleration type for each model, matching the acceleration type of
findface-extraction-api
: CPU or GPU. Be aware thatfindface-extraction-api
on CPU can work only with CPU-models, whilefindface-extraction-api
on GPU supports both CPU- and GPU-models.Open the
findface-extraction-api.yaml
configuration file.sudo vi /opt/findface-multi/configs/findface-extraction-api/findface-extraction-api.yaml
Specify the body detector model in the
detectors → models
section by pasting the following code:GPU
detectors: ... models: ... body_gustav: aliases: - body - edie - shiloette - glen model: detector/bodydet.kali_accurate.021.gpu.fnk options: min_object_size: 32 resolutions: - 2048x2048 ...
CPU
detectors: ... models: ... body_gustav: aliases: - body - edie - shiloette - glen model: detector/bodydet.kali_accurate.021.cpu.fnk options: min_object_size: 32 resolutions: - 2048x2048 ...
Make sure that the
objects → body
section contains thequality_attribute: body_quality
and thebase_normalizer: facenorm/cropbbox.v2.gpu.fnk
or thebase_normalizer: facenorm/cropbbox.v2.cpu.fnk
, depending on your acceleration type:GPU
objects: ... body: base_normalizer: facenorm/cropbbox.v2.gpu.fnk quality_attribute: body_quality ...
CPU
objects: ... body: base_normalizer: facenorm/cropbbox.v2.cpu.fnk quality_attribute: body_quality ...
Make sure that the
normalizers
section contains a model for thecropbbox
normalizer, as shown in the example below. This normalizer is required for the extractors.GPU
normalizers: ... models: ... cropbbox: model: facenorm/cropbbox.v2.gpu.fnk ...
CPU
normalizers: ... models: ... cropbbox: model: facenorm/cropbbox.v2.cpu.fnk ...
Specify the extraction models in the
extractors → models
section, subject to the extractors you want to enable:GPU
extractors: ... models: body_action_base6: default: model: '' body_action_car: default: model: '' body_action_fights: default: model: '' body_age_gender: default: model: pedattr/pedattr.age_gender.v0.gpu.fnk body_bags: default: model: pedattr/pedattr.bags.v0.gpu.fnk body_clothes: default: model: pedattr/pedattr.clothes_type.v0.gpu.fnk body_clothes34671: default: model: '' body_color: default: model: pedattr/pedattr.color.v1.gpu.fnk body_emben: default: model: pedrec/pedrec.durga.gpu.fnk body_fall: default: model: pedattr/pedattr.fall.v1.gpu.fnk body_handface: default: model: pedattr/pedattr.handface.v1.gpu.fnk body_mideast_clothes: default: model: '' body_protective_equipment: default: model: pedattr/pedattr.protective.v1.gpu.fnk body_quality: default: model: pedattr/pedattr.quality.v0.gpu.fnk ...
CPU
extractors: ... models: body_action_base6: default: model: '' body_action_car: default: model: '' body_action_fights: default: model: '' body_age_gender: default: model: pedattr/pedattr.age_gender.v0.cpu.fnk body_bags: default: model: pedattr/pedattr.bags.v0.cpu.fnk body_clothes: default: model: pedattr/pedattr.clothes_type.v0.cpu.fnk body_clothes34671: default: model: '' body_color: default: model: pedattr/pedattr.color.v1.cpu.fnk body_emben: default: model: pedrec/pedrec.durga.cpu.fnk body_fall: default: model: pedattr/pedattr.fall.v1.cpu.fnk body_handface: default: model: pedattr/pedattr.handface.v1.cpu.fnk body_mideast_clothes: default: model: '' body_protective_equipment: default: model: pedattr/pedattr.protective.v1.cpu.fnk body_quality: default: model: pedattr/pedattr.quality.v0.cpu.fnk ...
The following extractors are available:
Extractor
Configure as follows
age and gender
body_age_gender: pedattr/pedattr.age_gender.v0.gpu.fnk
body_age_gender: pedattr/pedattr.age_gender.v0.cpu.fnk
presence of bag
body_bags: pedattr/pedattr.bags.v0.gpu.fnk
body_bags: pedattr/pedattr.bags.v0.cpu.fnk
clothing type
body_clothes: pedattr/pedattr.clothes_type.v0.gpu.fnk
body_clothes: pedattr/pedattr.clothes_type.v0.cpu.fnk
clothing color
body_color: pedattr/pedattr.color.v1.gpu.fnk
body_color: pedattr/pedattr.color.v1.cpu.fnk
individual body feature vector
body_emben: pedrec/pedrec.durga.gpu.fnk
body_emben: pedrec/pedrec.durga.cpu.fnk
presence of protective equipment
body_protective_equipment: pedattr/pedattr.protective.v1.gpu.fnk
body_protective_equipment: pedattr/pedattr.protective.v1.cpu.fnk
body quality
body_quality: pedattr/pedattr.quality.v0.gpu.fnk
body_quality: pedattr/pedattr.quality.v0.cpu.fnk
body fall
body_fall: pedattr/pedattr.fall.v1.gpu.fnk
body_fall: pedattr/pedattr.fall.v1.cpu.fnk
smoking, phone usage
body_handface: pedattr/pedattr.handface.v1.gpu.fnk
body_handface: pedattr/pedattr.handface.v1.cpu.fnk
Important
For body recognition to work properly, the
body_emben
and thebody_quality
extractors must be enabled.GPU
extractors: ... models: ... body_emben: default: model: pedrec/pedrec.durga.gpu.fnk ... body_quality: default: model: pedattr/pedattr.quality.v0.gpu.fnk ...
CPU
extractors: ... models: ... body_emben: default: model: pedrec/pedrec.durga.cpu.fnk ... body_quality: default: model: pedattr/pedattr.quality.v0.cpu.fnk ...
Modify the
/opt/findface-multi/configs/findface-video-worker/findface-video-worker.yaml
configuration file.In the
models
section, specify the body neural network models by analogy with the example below:GPU
sudo vi /opt/findface-multi/configs/findface-video-worker/findface-video-worker.yaml models: ... detectors: ... body: fnk_path: /usr/share/findface-data/models/detector/bodydet.gustav_normal.021.gpu.fnk min_size: 60 ... normalizers: ... body_norm: fnk_path: /usr/share/findface-data/models/facenorm/cropbbox.v2.gpu.fnk body_norm_quality: fnk_path: /usr/share/findface-data/models/facenorm/cropbbox.v2.gpu.fnk ... extractors: ... body_quality: fnk_path: /usr/share/findface-data/models/pedattr/pedattr.quality.v0.gpu.fnk normalizer: body_norm_quality
CPU
sudo vi /opt/findface-multi/configs/findface-video-worker/findface-video-worker.yaml models: ... detectors: ... body: fnk_path: /usr/share/findface-data/models/detector/bodydet.gustav_normal.021.cpu.fnk min_size: 60 ... normalizers: ... body_norm: fnk_path: /usr/share/findface-data/models/facenorm/cropbbox.v2.cpu.fnk body_norm_quality: fnk_path: /usr/share/findface-data/models/facenorm/cropbbox.v2.cpu.fnk ... extractors: ... body_quality: fnk_path: /usr/share/findface-data/models/pedattr/pedattr.quality.v0.cpu.fnk normalizer: body_norm_quality
Make sure that the
objects → body
section is included:objects: ... body: normalizer: body_norm quality: body_quality track_features: ''
Open the
/opt/findface-multi/configs/findface-video-manager/findface-video-manager.yaml
configuration file and make sure it contains thebody
section indetectors
that looks similar to the example below.sudo vi /opt/findface-multi/configs/findface-video-manager/findface-video-manager.yaml detectors: ... body: filter_min_quality: 0.6 filter_min_size: 70 filter_max_size: 8192 roi: '' fullframe_crop_rot: false fullframe_use_png: false jpeg_quality: 95 overall_only: true realtime_post_first_immediately: false realtime_post_interval: 1 realtime_post_every_interval: false track_interpolate_bboxes: true track_miss_interval: 1 track_overlap_threshold: 0.25 track_max_duration_frames: 0 track_send_history: false post_best_track_frame: true post_best_track_normalize: true post_first_track_frame: false post_last_track_frame: false tracker_type: simple_iou track_deep_sort_matching_threshold: 0.65 track_deep_sort_filter_unconfirmed_tracks: true track_object_is_principal: false track_history_active_track_miss_interval: 0 filter_track_min_duration_frames: 1 extractors_track_triggers: {}
Enable recognition of bodies and body attributes in the
/opt/findface-multi/configs/findface-multi-legacy/findface-multi-legacy.py
configuration file. Do the following:In the
FFSECURITY
section, set'ENABLE_BODIES': True
.sudo vi /opt/findface-multi/configs/findface-multi-legacy/findface-multi-legacy.py FFSECURITY = { ... # optional objects to detect 'ENABLE_BODIES': True, ...
To improve quality of body recognition, we recommend that you enable additional attribute analysis. In this case, the system compares not only the feature vectors of two bodies but also their attributes. A conclusion about the bodies’ match is only made if both the feature vectors and attributes of the bodies coincide.
You can use the following attributes for additional analysis:
bottom_color
: color of lower body wear;top_color
: color of upper body wear;headwear
: type and absence/presence of headgear;detailed_upper_clothes
: specific type of upper body wear, e.g., jacket;upper_clothes
: generalized category of upper body wear: long sleeves, short sleeves, no sleeve;lower_clothes
: type of lower body wear, e.g., pants;helmet_type
: helmet type by color, visibility, absence/presence;vest_type
: vest type by color, visibility, absence/presence;age_group
: belonging to any of four age groups: 0-16, 17-35, 36-50, 50+ years;gender
: male or female.
To enable additional attribute analysis, set
True
in theFFSECURITY
→EXTRA_BODY_MATCHING
section for the attributes that you want to compare. Setmin_confidence
value between 0 and 1.FFSECURITY = { # use additional features for extra confidence when matching body by emben 'EXTRA_BODY_MATCHING': { 'bottom_color': {'enabled': False, 'min_confidence': 0}, 'top_color': {'enabled': False, 'min_confidence': 0}, 'headwear': {'enabled': False, 'min_confidence': 0}, 'detailed_upper_clothes': {'enabled': False, 'min_confidence': 0}, 'upper_clothes': {'enabled': False, 'min_confidence': 0}, 'lower_clothes': {'enabled': False, 'min_confidence': 0}, 'helmet_type': {'enabled': False, 'min_confidence': 0}, 'vest_type': {'enabled': False, 'min_confidence': 0}, 'age_group': {'enabled': False, 'min_confidence': 0}, 'gender': {'enabled': False, 'min_confidence': 0}, },
Note
Contact our technical experts (support@ntechlab.com) for advice on
min_confidence
optimum value.If you decide that you do not need additional attribute analysis, then skip this configuration and proceed to the next step.
In the
FFSECURITY
section, specify the body attributes that you want to display for the body recognition events.# available features: age_gender, bags, clothes, color, protective_equipment, fall, handface 'BODY_EVENTS_FEATURES': ['age_gender', 'protective_equipment', 'clothes', 'fall', 'color', 'handface', 'bags'],
Restart all FindFace Multi containers.
cd /opt/findface-multi/ sudo docker-compose restart
In the web interface, navigate to Video Source. Select a camera in the Cameras tab (or an uploaded file in the Uploads tab, or an external detector in the corresponding tab). Navigate to the General tab. Select Bodies in the Detectors section.