Enable Vehicle and Vehicle Attribute Recognition
FindFace Multi allows you to recognize a single vehicle and its attributes.
The vehicle attributes are as follows:
license plate number (for selected countries),
Note
Currently, the following countries are supported:
Europe: Russia, Lithuania, Latvia, Estonia, Finland, Czech Republic, Serbia, Belarus, Ukraine, Moldova, Georgia, Azerbaijan, Armenia, Türkiye.
Asia: the UAE, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, Saudi Arabia, Vietnam, India, Pakistan, Thailand, China, Japan, Mongolia, Singapore, South Korea, Bahrain, Qatar, Palestine, Iran, Iraq, Jordan, Kuwait, Oman.
Africa: Egypt, Morocco, Tunisia, South Africa.
North America: Mexico.
South America: Argentina, Brazil, Colombia, Peru.
color,
make,
model,
body style,
vehicle category,
vehicle orientation (front, rear, or side),
special vehicle type (taxi, route transport, carsharing, ambulance, police, rescue service, gas service, military, road service, cash-in-transit vehicles, other special),
vehicle weight and body size.
Note
Special vehicle recognition as well as vehicle weight and body size recognition work for selected countries only and may not work for your country. For more information please contact your manager or our support team (support@ntechlab.com).
Vehicle recognition along with the attributes choice can be configured at the installation level. The standard deployment of the car
object and its attributes configures the system to recognize by default license plate numbers, not vehicles. It means that a vehicle event will only be created if a license plate number is recognized. This section describes how to enable vehicle and vehicle attribute recognition in case this step has been skipped during installation. Also, you will learn how to configure the findface-video-worker
service to get detection events when either a vehicle or a license plate number is recognized.
To enable recognition of vehicles and their attributes, do the following:
Specify neural network models for vehicle recognition and vehicle attribute recognition in the
/opt/findface-multi/configs/findface-extraction-api/findface-extraction-api.yaml
configuration file.Important
Be sure to choose the right acceleration type for each model, matching the acceleration type of
findface-extraction-api
: CPU or GPU. Be aware thatfindface-extraction-api
on CPU can work only with CPU-models, whilefindface-extraction-api
on GPU supports both CPU- and GPU-models.Open the
findface-extraction-api.yaml
configuration file.sudo vi /opt/findface-multi/configs/findface-extraction-api/findface-extraction-api.yaml
Specify the vehicle detector model in the
detectors → models
section by pasting the following code:GPU
detectors: ... models: ... gustav: aliases: - car - efreitor model: detector/cardet.kali_accurate.008.gpu.fnk options: min_object_size: 32 resolutions: - 2048x2048 ...
CPU
detectors: ... models: ... gustav: aliases: - car - efreitor model: detector/cardet.kali_accurate.008.cpu.fnk options: min_object_size: 32 resolutions: - 2048x2048 ...
In the
objects → car
section, specify thequality_attribute: car_quality
and thebase_normalizer: facenorm/cropbbox.v2.gpu.fnk
or thebase_normalizer: facenorm/cropbbox.v2.cpu.fnk
, depending on your acceleration type:GPU
objects: ... car: base_normalizer: facenorm/cropbbox.v2.gpu.fnk quality_attribute: car_quality ...
CPU
objects: ... car: base_normalizer: facenorm/cropbbox.v2.cpu.fnk quality_attribute: car_quality ...
Specify the normalizers required for the extractors. If you need license plate recognition, specify the
carlicplate
normalizer. For other extractors, specify thecropbbox
normalizer.Normalizer
Normalizer model
Used for extractors
carlicplate
carnorm/carnorm.briacon.v3.gpu.fnk
carnorm/carnorm.briacon.v3.cpu.fnk
car_license_plate
cropbbox
facenorm/cropbbox.v2.gpu.fnk
facenorm/cropbbox.v2.cpu.fnk
car_license_plate_quality
,car_description
,car_quality
,car_special_types12
,car_categories
,car_orientation
,car_weight_types7
GPU
normalizers: ... models: ... carlicplate: model: carnorm/carnorm.briacon.v3.gpu.fnk ... cropbbox: model: facenorm/cropbbox.v2.gpu.fnk ...
CPU
normalizers: ... models: ... carlicplate: model: carnorm/carnorm.briacon.v3.cpu.fnk ... cropbbox: model: facenorm/cropbbox.v2.cpu.fnk ...
Specify the extraction models in the
extractors → models
section, subject to the extractors you want to enable:GPU
extractors: ... models: car_categories: default: model: carattr/carattr.categories.v1.gpu.fnk car_color: default: model: '' car_container_number: default: model: '' car_description: default: model: carattr/carattr.description.v1.gpu.fnk car_dumptruck_types: default: model: '' car_emben: default: model: carrec/bottas.gpu.fnk car_license_plate: default: model: carattr/carattr.license_plate.v11.gpu.fnk car_license_plate_quality: default: model: carattr/carattr.license_plate_quality.v4.gpu.fnk car_license_plate_visibility: default: model: '' car_make: default: model: '' car_orientation: default: model: carattr/carattr.orientation.v0.gpu.fnk car_quality: default: model: carattr/carattr.quality.v1.gpu.fnk car_special_types: default: model: '' car_special_types11: default: model: '' car_special_types12: default: model: carattr/carattr.special_types12.v0.gpu.fnk car_trash: default: model: '' car_weight_types7: default: model: carattr/carattr.weight_types7.v0.gpu.fnk
CPU
extractors: ... models: car_categories: default: model: carattr/carattr.categories.v1.cpu.fnk car_color: default: model: '' car_container_number: default: model: '' car_description: default: model: carattr/carattr.description.v1.cpu.fnk car_dumptruck_types: default: model: '' car_emben: default: model: carrec/bottas.cpu.fnk car_license_plate: default: model: carattr/carattr.license_plate.v11.cpu.fnk car_license_plate_quality: default: model: carattr/carattr.license_plate_quality.v4.cpu.fnk car_license_plate_visibility: default: model: '' car_make: default: model: '' car_orientation: default: model: carattr/carattr.orientation.v0.cpu.fnk car_quality: default: model: carattr/carattr.quality.v1.cpu.fnk car_special_types: default: model: '' car_special_types11: default: model: '' car_special_types12: default: model: carattr/carattr.special_types12.v0.cpu.fnk car_trash: default: model: '' car_weight_types7: default: model: carattr/carattr.weight_types7.v0.cpu.fnk
The following extractors are available:
Extractor
Configure as follows
vehicle feature vector
car_emben: carrec/bottas.cpu.fnk
car_emben: carrec/bottas.gpu.fnk
license plate number
car_license_plate: carattr/carattr.license_plate.v11.cpu.fnk
car_license_plate_quality: carattr/carattr.license_plate_quality.v4.cpu.fnk
car_license_plate: carattr/carattr.license_plate.v11.gpu.fnk
car_license_plate_quality: carattr/carattr.license_plate_quality.v4.gpu.fnk
set of attributes: make / color / model / body style
car_description: carattr/carattr.description.v1.cpu.fnk
car_description: carattr/carattr.description.v1.gpu.fnk
vehicle image quality
car_quality: carattr/carattr.quality.v1.cpu.fnk
car_quality: carattr/carattr.quality.v1.gpu.fnk
special vehicle
car_special_types: carattr/carattr.special_types12.v0.cpu.fnk
car_special_types: carattr/carattr.special_types12.v0.gpu.fnk
vehicle category
car_categories: carattr/carattr.categories.v1.cpu.fnk
car_categories: carattr/carattr.categories.v1.gpu.fnk
vehicle weight and body size
car_weight_types7: carattr/carattr.weight_types7.v0.cpu.fnk
car_weight_types7: carattr/carattr.weight_types7.v0.gpu.fnk
vehicle orientation
car_orientation: carattr/carattr.orientation.v0.cpu.fnk
car_orientation: carattr/carattr.orientation.v0.gpu.fnk
Note
The default special vehicle recognition model is
carattr.special_types12.v0
, specified in thecar_special_types12
extractor. It predicts 12 classes. However, you may decide to bring a special vehicle recognition model that predicts fewer classes. If you use thecarattr.special_types11.v1
model, specify it in thecar_special_types11
extractor in the/opt/findface-multi/configs/findface-extraction-api/findface-extraction-api.yaml
file. If you use thecarattr.special_types.v0
model, specify it in thecar_special_types
extractor in the/opt/findface-multi/configs/findface-extraction-api/findface-extraction-api.yaml
file.In the
/opt/findface-multi/configs/findface-multi-legacy/findface-multi-legacy.py
file, configure the default value of theCAR_SPECIAL_VEHICLE_TYPE_EXTRACTOR
parameter, which is set tocar_special_types12
, to specify the enabled special vehicle recognition extractor. E.g., if you enabled thecarattr.special_types11.v1
model, specify'CAR_SPECIAL_VEHICLE_TYPE_EXTRACTOR': 'car_special_types11'
.Standard FindFace Multi installation pack includes
carattr.special_types12.v0
special vehicle recognition model. If you use another special vehicle recognition model, copy it to the/opt/findface-multi/models/carattr/
directory before editing the configuration files.Important
The enabled attributes will be recognized by FindFace Multi. The confidence value of the recognized attribute depends on the neural network models used. For more information please contact our support team at support@ntechlab.com.
Modify the
/opt/findface-multi/configs/findface-video-worker/findface-video-worker.yaml
configuration file.Depending on your needs, you may configure the
findface-video-worker
service so that detection events are created when either a vehicle or a license plate number is recognized. The example below shows how to configure thefindface-video-worker
service to get vehicle detection events only when a license plate number is recognized.If you want to get vehicle detection events based on the recognition of the vehicle itself, specify the
carattr.quality.v1
model in theextractors
→car_quality
section in the example below. The rest of the configuration will remain unchanged.In the
models
section, specify the vehicle detector, normalizer, and extractor models as shown in the example below:GPU
sudo vi /opt/findface-multi/configs/findface-video-worker/findface-video-worker.yaml models: ... detectors: ... car: fnk_path: /usr/share/findface-data/models/detector/car.gustav_normal.007.gpu.fnk min_size: 60 ... normalizers: ... car_norm: fnk_path: /usr/share/findface-data/models/facenorm/cropbbox.v2.gpu.fnk car_norm_quality: fnk_path: /usr/share/findface-data/models/facenorm/cropbbox.v2.gpu.fnk ... extractors: ... car_quality: fnk_path: /usr/share/findface-data/models/carattr/carattr.license_plate_quality.v4.gpu.fnk normalizer: car_norm_quality
CPU
sudo vi /opt/findface-multi/configs/findface-video-worker/findface-video-worker.yaml models: ... detectors: ... car: fnk_path: /usr/share/findface-data/models/detector/car.gustav_normal.007.cpu.fnk min_size: 60 ... normalizers: ... car_norm: fnk_path: /usr/share/findface-data/models/facenorm/cropbbox.v2.cpu.fnk car_norm_quality: fnk_path: /usr/share/findface-data/models/facenorm/cropbbox.v2.cpu.fnk ... extractors: ... car_quality: fnk_path: /usr/share/findface-data/models/carattr/carattr.license_plate_quality.v4.cpu.fnk normalizer: car_norm_quality
Add the
car
section withinobjects
:objects: ... car: normalizer: car_norm quality: car_quality track_features: ''
Important
If the
findface-video-worker
service is configured for license plate recognition, a vehicle detection event may not be created in case the license plate is not recognized.Open the
/opt/findface-multi/configs/findface-video-manager/findface-video-manager.yaml
configuration file and make sure it contains thecar
section indetectors
that looks similar to the example below. Note that thefilter_min_quality
parameter is set to0.6
by default. You can increase it to get more accurate results from cameras and other video sources. The best practice is to set this value to0.73
.sudo vi /opt/findface-multi/configs/findface-video-manager/findface-video-manager.yaml detectors: ... car: filter_min_quality: 0.6 filter_min_size: 100 filter_max_size: 8192 roi: '' fullframe_crop_rot: false fullframe_use_png: false jpeg_quality: 95 overall_only: true realtime_post_first_immediately: false realtime_post_interval: 1 realtime_post_every_interval: false track_interpolate_bboxes: true track_miss_interval: 1 track_overlap_threshold: 0.25 track_max_duration_frames: 0 track_send_history: false post_best_track_frame: true post_best_track_normalize: true post_first_track_frame: false post_last_track_frame: false tracker_type: simple_iou track_deep_sort_matching_threshold: 0.65 track_deep_sort_filter_unconfirmed_tracks: true track_object_is_principal: false track_history_active_track_miss_interval: 0 filter_track_min_duration_frames: 1 tracker_settings: oc_sort: filter_unconfirmed_tracks: true high_quality_detects_threshold: 0.6 momentum_delta_time: 3 smooth_factor: 0.5 time_since_update: 0 extractors_track_triggers: {}
Note
Configuration of the
filter_min_quality
parameter affects the results that you get from video sources only and does not affect vehicle counting results and quality of the vehicle images that are used in the records. To get more accurate counting results or vehicle records with better quality images, configure theMINIMUM_CAR_QUALITY
parameter individually in thefindface-multi-legacy.py
configuration file. This setting will be described below.Enable recognition of vehicles and their attributes in the
/opt/findface-multi/configs/findface-multi-legacy/findface-multi-legacy.py
configuration file. Do the following:In the
FFSECURITY
section, set'ENABLE_CARS': True
.sudo vi /opt/findface-multi/configs/findface-multi-legacy/findface-multi-legacy.py FFSECURITY = { ... # optional objects to detect 'ENABLE_CARS': True, ...
In the same section, you can configure the
MINIMUM_CAR_QUALITY
parameter. By default, it’s set to0.6
, which is the recommended minimum value for vehicle image quality, sufficient to make a record or use an object in a counter.FFSECURITY = { ... # minimum car quality sufficient to add it to a card and use object in counter # p.s. set this parameter equals to `0.73` for more accurate results 'MINIMUM_CAR_QUALITY': 0.6, # model: [carattr.quality.v1] ...
If you need more accurate counting results or vehicle records with better quality images, you can increase the
MINIMUM_CAR_QUALITY
threshold. The best practice is to set this value to0.73
.In the
FFSECURITY
section, specify the attributes you want to display for vehicle recognition events.# available features are: category, description, license_plate, orientation, special_vehicle_type, weight_type 'CAR_EVENTS_FEATURES': ['license_plate', 'category', 'special_vehicle_type', 'description', 'weight_type', 'orientation'],
Restart all FindFace Multi containers.
cd /opt/findface-multi/ sudo docker-compose restart
In the web interface, navigate to Video Sources. Select a camera in the Cameras tab (or an uploaded file in the Uploads tab, or an external detector in the corresponding tab). Navigate to the General tab. Select Vehicles in the Detectors section.