findface-extraction-api
¶
The findface-extraction-api
service uses neural networks to detect a face in an image, extract face biometric data (feature vector), and recognize gender, age, emotions, and other features.
It interfaces with the findface-sf-api
service as follows:
- Gets original images with faces and normalized face images.
- Returns the coordinates of the face bounding box, and (optionally) feature vector, gender, age and emotions data, should these data be requested by
findface-sf-api
.
Functionality:
- face detection in an original image (with return of the bbox coordinates),
- face normalization,
- feature vector extraction from a normalized image,
- face feature recognition (gender, age, emotions, beard, glasses3, etc.).
The findface-extraction-api
service can be based on CPU (installed from the findface-extraction-api
package) or GPU (installed from the findface-extraction-api-gpu
package). For both CPU- and GPU-accelerated services, configuration is done through the /etc/findface-extraction-api.ini
configuration file. Its content varies subject to the acceleration type.
CPU-service configuration file:
detectors:
max_batch_size: 1
instances: 2
models:
cheetah:
model: facedet/cheetah.cpu.fnk
options:
min_object_size: 32
resolutions:
- 256x256
- 384x384
- 512x512
- 768x768
- 1024x1024
- 1536x1536
- 2048x2048
quality_estimator: true
normalizers:
max_batch_size: 8
instances: 2
models:
bee:
model: facenorm/bee.v2.cpu.fnk
crop1x:
model: ''
crop2x:
model: ''
extractors:
max_batch_size: 8
instances: 2
models:
age: ''
beard: ''
emotions: ''
face: face/ifruit_320.cpu.fnk
gender: ''
glasses3: ''
liveness: ''
quality: faceattr/quality.v0.cpu.fnk
gpu_device: 0
models_root: /usr/share/findface-data/models
cache_dir: /var/cache/findface/models_cache
listen: 127.0.0.1:18666
license_ntls_server: 127.0.0.1:3133
fetch:
enabled: true
size_limit: 10485760
max_dimension: 6000
allow_cors: false
ticker_interval: 5000
prometheus:
timing_buckets:
- 0.001
- 0.005
- 0.01
- 0.02
- 0.03
- 0.05
- 0.1
- 0.2
- 0.3
- 0.5
- 0.75
- 0.9
- 1
- 1.1
- 1.3
- 1.5
- 1.7
- 2
- 3
- 5
- 10
- 20
- 30
- 50
resolution_buckets:
- 10000
- 20000
- 40000
- 80000
- 100000
- 200000
- 400000
- 800000
- 1e+06
- 2e+06
- 3e+06
- 4e+06
- 5e+06
- 6e+06
- 8e+06
- 1e+07
- 12000000.0
- 15000000.0
- 18000000.0
- 2e+07
- 3e+07
- 5e+07
- 1e+08
faces_buckets:
- 0
- 1
- 2
- 5
- 10
- 20
- 50
- 75
- 100
- 200
- 300
- 400
- 500
- 600
- 700
- 800
- 900
- 1000
GPU-service configuration file:
detectors:
max_batch_size: 1
instances: 2
models:
cheetah:
model: facedet/cheetah.gpu.fnk
options:
min_object_size: 32
resolutions:
- 256x256
- 384x384
- 512x512
- 768x768
- 1024x1024
- 1536x1536
- 2048x2048
quality_estimator: true
normalizers:
max_batch_size: 8
instances: 2
models:
bee:
model: facenorm/bee.v2.gpu.fnk
crop1x:
model: ''
crop2x:
model: ''
extractors:
max_batch_size: 8
instances: 2
models:
age: ''
beard: ''
emotions: ''
face: face/ifruit_320.gpu.fnk
gender: ''
glasses3: ''
liveness: ''
quality: faceattr/quality.v0.gpu.fnk
gpu_device: 0
models_root: /usr/share/findface-data/models
cache_dir: /var/cache/findface/models_cache
listen: 127.0.0.1:18666
license_ntls_server: 127.0.0.1:3133
fetch:
enabled: true
size_limit: 10485760
max_dimension: 6000
allow_cors: false
ticker_interval: 5000
prometheus:
timing_buckets:
- 0.001
- 0.005
- 0.01
- 0.02
- 0.03
- 0.05
- 0.1
- 0.2
- 0.3
- 0.5
- 0.75
- 0.9
- 1
- 1.1
- 1.3
- 1.5
- 1.7
- 2
- 3
- 5
- 10
- 20
- 30
- 50
resolution_buckets:
- 10000
- 20000
- 40000
- 80000
- 100000
- 200000
- 400000
- 800000
- 1e+06
- 2e+06
- 3e+06
- 4e+06
- 5e+06
- 6e+06
- 8e+06
- 1e+07
- 12000000.0
- 15000000.0
- 18000000.0
- 2e+07
- 3e+07
- 5e+07
- 1e+08
faces_buckets:
- 0
- 1
- 2
- 5
- 10
- 20
- 50
- 75
- 100
- 200
- 300
- 400
- 500
- 600
- 700
- 800
- 900
- 1000
When configuring findface-extraction-api
(on CPU or GPU), refer to the following parameters:
Parameter | Description |
---|---|
detectors ->
quality_estimator |
Enables face quality estimation. In this case, findface-extraction-api returns a face quality score
in the detection_score field. Interpret the quality score further in analytics. Upright faces in
frontal position are considered the best quality. They result in values around 0, mostly negative
(such as -0.00067401276, for example). Inverted faces and large face angles are estimated with negative
values some -5 and less. |
cheetah ->
min_object_size |
The minimum size of a face (bbox) guaranteed to be detected. The larger the value, the less resources required for face detection. |
license_ntls_server |
The ntls license server IP address and port. |
gpu_device |
(Only for GPU) The number of the GPU device used by findface-extraction-api-gpu . |
You will also have to enable recognition models for face features such as gender, age, emotions, glasses3, and/or beard, subject to your needs. Be sure to choose the right acceleration type for each model, matching the acceleration type of findface-extraction-api
: CPU or GPU. Be aware that findface-extraction-api
on CPU can work only with CPU-models, while findface-extraction-api
on GPU supports both CPU- and GPU-models.
models:
age: faceattr/age.v1.cpu.fnk
emotions: faceattr/emotions.v1.cpu.fnk
face: face/ifruit_320.cpu.fnk
gender: faceattr/gender.v2.cpu.fnk
beard: faceattr/beard.v0.cpu.fnk
glasses3: faceattr/glasses3.v0.cpu.fnk
The following models are available:
Face feature | Acceleration | Configuration file parameter |
---|---|---|
face (biometry) | CPU | face: face/ifruit_320.cpu.fnk face: face/ifruit_160.cpu.fnk |
GPU | face: face/ifruit_320.gpu.fnk face: face/ifruit_160.gpu.fnk |
|
age | CPU | age: faceattr/age.v1.cpu.fnk |
GPU | age: faceattr/age.v1.gpu.fnk |
|
gender | CPU | gender: faceattr/gender.v2.cpu.fnk |
GPU | gender: faceattr/gender.v2.gpu.fnk |
|
emotions | CPU | emotions: faceattr/emotions.v1.cpu.fnk |
GPU | emotions: faceattr/emotions.v1.gpu.fnk |
|
glasses3 | CPU | glasses3: faceattr/glasses3.v0.cpu.fnk |
GPU | glasses3: faceattr/glasses3.v0.gpu.fnk |
|
beard | CPU | beard: faceattr/beard.v0.cpu.fnk |
GPU | beard: faceattr/beard.v0.gpu.fnk |
Tip
To disable a recognition model, simply pass an empty value to a relevant parameter. Do not remove the parameter itself as in this case the system will be searching for the default model.
models:
gender: ""
age: ""
emotions: ""