Enable Vehicle and Vehicle Attribute Recognition
FindFace Server allows you to recognize a single vehicle and its attributes.
The vehicle attributes are as follows:
license plate number (for selected countries),
Note
Currently, the following countries are supported:
Europe: Russia, Lithuania, Latvia, Estonia, Finland, Czech Republic, Serbia, Belarus, Ukraine, Moldova, Georgia, Azerbaijan, Armenia.
Asia: the UAE, Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, Saudi Arabia, Vietnam, India, Pakistan, Thailand.
North America: Mexico.
South America: Argentina, Brazil.
color,
make,
model,
body style,
vehicle category,
vehicle orientation (front, rear, or side),
special vehicle type (taxi, route transport, carsharing, ambulance, police, rescue service, gas service, military, road service, other special),
vehicle weight and body size.
Note
Special vehicle recognition as well as vehicle weight and body size recognition work for selected countries only and may not work for your country. For more information please contact your manager or our support team (support@ntechlab.com).
This section describes how to enable vehicle and vehicle attribute recognition.
To enable recognition of vehicles and their attributes, do the following:
Specify neural network models for vehicle recognition and vehicle attribute recognition in the
/opt/ffserver/configs/extraction-api.yamlconfiguration file.Important
Be sure to choose the right acceleration type for each model, matching the acceleration type of
extraction-api: CPU or GPU. Be aware thatextraction-apion CPU can work only with CPU-models, whileextraction-apion GPU supports both CPU- and GPU-models.Open the
extraction-api.yamlconfiguration file.sudo vi /opt/ffserver/configs/extraction-api.yaml
Specify the vehicle detector model in the
detectors -> modelssection by pasting the following code:GPU
detectors: ... models: ... gustav: aliases: - car - efreitor model: detector/cardet.kali.008.gpu.fnk options: min_object_size: 32 resolutions: - 2048x2048 ...
CPU
detectors: ... models: ... gustav: aliases: - car - efreitor model: detector/cardet.kali.008.cpu.fnk options: min_object_size: 32 resolutions: - 2048x2048 ...
Make sure that the
objects -> carsection contains thequality_attribute: car_qualityand thebase_normalizer: facenorm/cropbbox.v2.gpu.fnkor thebase_normalizer: facenorm/cropbbox.v2.cpu.fnk, depending on your acceleration type:GPU
objects: ... car: base_normalizer: facenorm/cropbbox.v2.gpu.fnk quality_attribute: car_quality ...
CPU
objects: ... car: base_normalizer: facenorm/cropbbox.v2.cpu.fnk quality_attribute: car_quality ...
Specify the normalizers required for the extractors. If you need license plate recognition, specify the
carlicplatenormalizer. For other extractors, specify thecropbboxnormalizer.Normalizer
Normalizer model
Used for extractors
carlicplate
carnorm/carnorm.briacon.v2.gpu.fnkcarnorm/carnorm.briacon.v2.cpu.fnkcar_license_platecropbbox
facenorm/cropbbox.v2.gpu.fnkfacenorm/cropbbox.v2.cpu.fnkcar_license_plate_quality,car_description,car_quality,car_special_types11,car_categories,car_orientation,car_weight_types7GPU
normalizers: ... models: ... carlicplate: model: carnorm/carnorm.briacon.v2.gpu.fnk ... cropbbox: model: facenorm/cropbbox.v2.gpu.fnk ...
CPU
normalizers: ... models: ... carlicplate: model: carnorm/carnorm.briacon.v2.cpu.fnk ... cropbbox: model: facenorm/cropbbox.v2.cpu.fnk ...
Specify the extraction models in the
extractors -> modelssection, subject to the extractors you want to enable:GPU
extractors: ... models: car_categories: default: model: carattr/carattr.categories.v1.gpu.fnk car_description: default: model: carattr/carattr.description.v1.gpu.fnk car_emben: default: model: carrec/bottas.gpu.fnk car_license_plate: default: model: carattr/carattr.license_plate.v9.gpu.fnk car_license_plate_quality: default: model: carattr/carattr.license_plate_quality.v3.gpu.fnk car_orientation: default: model: carattr/carattr.orientation.v0.gpu.fnk car_quality: default: model: carattr/carattr.quality.v1.gpu.fnk car_special_types11: default: model: carattr/carattr.special_types11.v1.gpu.fnk car_weight_types7: default: model: carattr/carattr.weight_types7.v0.gpu.fnk ...
CPU
extractors: ... models: car_categories: default: model: carattr/carattr.categories.v1.cpu.fnk car_description: default: model: carattr/carattr.description.v1.cpu.fnk car_emben: default: model: carrec/bottas.cpu.fnk car_license_plate: default: model: carattr/carattr.license_plate.v9.cpu.fnk car_license_plate_quality: default: model: carattr/carattr.license_plate_quality.v3.cpu.fnk car_orientation: default: model: carattr/carattr.orientation.v0.cpu.fnk car_quality: default: model: carattr/carattr.quality.v1.cpu.fnk car_special_types11: default: model: carattr/carattr.special_types11.v1.cpu.fnk car_weight_types7: default: model: carattr/carattr.weight_types7.v0.cpu.fnk ...
The most used extraction models are the following:
Extractor
Configure as follows
vehicle feature vector
car_emben: carrec/bottas.cpu.fnkcar_emben: carrec/bottas.gpu.fnklicense plate number
car_license_plate: carattr/carattr.license_plate.v9.cpu.fnkcar_license_plate_quality: carattr/carattr.license_plate_quality.v3.cpu.fnkcar_license_plate: carattr/carattr.license_plate.v9.gpu.fnkcar_license_plate_quality: carattr/carattr.license_plate_quality.v3.gpu.fnkset of attributes: make / color / model / body style
car_description: carattr/carattr.description.v1.cpu.fnkcar_description: carattr/carattr.description.v1.gpu.fnkvehicle image quality
car_quality: carattr/carattr.quality.v1.cpu.fnkcar_quality: carattr/carattr.quality.v1.gpu.fnkspecial vehicle
car_special_types11: carattr/carattr.special_types11.v1.cpu.fnkcar_special_types11: carattr/carattr.special_types11.v1.gpu.fnkvehicle category
car_categories: carattr/carattr.categories.v1.cpu.fnkcar_categories: carattr/carattr.categories.v1.gpu.fnkvehicle weight and body size
car_weight_types7: carattr/carattr.weight_types7.v0.cpu.fnkcar_weight_types7: carattr/carattr.weight_types7.v0.gpu.fnkvehicle orientation
car_orientation: carattr/carattr.orientation.v0.cpu.fnkcar_orientation: carattr/carattr.orientation.v0.gpu.fnk
Modify the
/opt/ffserver/configs/video-worker.yamlconfiguration file.In the
modelssection, specify the vehicle detector, normalizer, and extractor models as shown in the example below:GPU
sudo vi /opt/ffserver/configs/video-worker.yaml
models: ... detectors: ... car: fnk_path: /usr/share/findface-data/models/detector/cardet.kali.008.gpu.fnk min_size: 60 ... normalizers: ... car_norm: fnk_path: /usr/share/findface-data/models/facenorm/cropbbox.v2.gpu.fnk car_norm_quality: fnk_path: /usr/share/findface-data/models/facenorm/cropbbox.v2.gpu.fnk ... extractors: ... car_quality: fnk_path: /usr/share/findface-data/models/carattr/carattr.quality.v1.gpu.fnk normalizer: car_norm_quality
CPU
sudo vi /opt/ffserver/configs/video-worker.yaml
models: ... detectors: ... car: fnk_path: /usr/share/findface-data/models/detector/cardet.kali.008.cpu.fnk min_size: 60 ... normalizers: ... car_norm: fnk_path: /usr/share/findface-data/models/facenorm/cropbbox.v2.cpu.fnk car_norm_quality: fnk_path: /usr/share/findface-data/models/facenorm/cropbbox.v2.cpu.fnk ... extractors: ... car_quality: fnk_path: /usr/share/findface-data/models/carattr/carattr.quality.v1.cpu.fnk normalizer: car_norm_quality
Make sure that the
objects -> carsection is included:objects: ... car: normalizer: car_norm quality: car_quality track_features: ''
Open the
/opt/ffserver/configs/video-manager.yamlconfiguration file and make sure it contains thecarsection indetectorsthat looks similar to the example below. Note that thefilter_min_qualityparameter is set to0.65by default. You can increase it to get more accurate results from cameras and other video sources. The best practice is to set this value to0.73.sudo vi /opt/ffserver/configs/video-manager.yaml
detectors: ... car: filter_min_quality: 0.65 filter_min_size: 100 filter_max_size: 8192 roi: '' fullframe_crop_rot: false fullframe_use_png: false jpeg_quality: 95 overall_only: true realtime_post_first_immediately: false realtime_post_interval: 1 realtime_post_every_interval: false track_interpolate_bboxes: true track_miss_interval: 1 track_overlap_threshold: 0.25 track_max_duration_frames: 0 track_send_history: false post_best_track_frame: true post_best_track_normalize: true post_first_track_frame: false post_last_track_frame: false tracker_type: simple_iou track_deep_sort_matching_threshold: 0.65 track_deep_sort_filter_unconfirmed_tracks: true track_object_is_principal: false track_history_active_track_miss_interval: 0