Migrate Feature Vectors to a Different Neural Network Model

This section is about how to migrate object feature vectors to another neural network model.

To migrate to a different neural network model, do the following:

  1. Create a backup of the Tarantool-based feature vector database in any directory of your choice, for example, /opt/ffserver/dumps.

    docker exec -it sf-api bash -c "mkdir dumps; cd dumps && /storage-api-dump -config /sf-api.yaml"
    docker cp sf-api-:/dumps /opt/ffserver
    
  2. Create new shards that will host regenerated feature vectors.

    1. Navigate to the directory for stored data (for example, /opt/ffserver/data/tnt) and find out the number of shards by counting the number of directories.

      Note

      There are two shards in the example below.

      cd /opt/ffserver/data/tnt
      
      ls -l
      
      shard-001
      shard-002
      
    2. Create directories that will host files of the new shards.

      sudo mkdir -p shard-01{1..2}/{index,snapshots,xlogs}
      
  3. Open the /opt/ffserver/configs/extraction-api.yaml configuration file and replace the extraction models with the new ones in the emben parameters (body_emben, car_emben and face_emben), depending on the object types you want to migrate.

    Important

    Be sure to choose the right acceleration type for each model, matching the acceleration type of extraction-api: CPU or GPU. Be aware that extraction-api on CPU can work only with CPU-models, while extraction-api on GPU supports both CPU- and GPU-models.

    sudo vi /opt/ffserver/configs/extraction-api.yaml
    

    CPU

    extractors:
      ...
      models:
        ...
         face_emben:
            default:
              model: face/<new_model_face>.cpu.fnk
         ...
    

    GPU

    extractors:
      ...
      models:
        ...
         face_emben:
            default:
              model: face/<new_model_face>.gpu.fnk
    
  4. Create new tntapi containers for each new shard. To do that, copy the docker run command of the existing service and replace the name of the shard and the path to the shard in the --volume flag.

    docker run -tid --name tnt-new-1 --restart always --network server \
        --env CFG_LISTEN_HOST=0.0.0.0 \
        --env CFG_NTLS=ntls:3133 \
        --env TT_LISTEN=0.0.0.0:32001 \
        --env TT_MEMTX_MEMORY=$((1024 * 1024 * 1024)) \
        --volume /opt/ffserver/tnt/001-new:/opt/ntech/var/lib/tarantool/default \
        docker.int.ntl/ntech/universe/tntapi:ffserver-12.240830.2
    

    Use environment environment and configuration flags:

    • CFG_LISTEN_HOST=0.0.0.0: host to public HTTP API.

    • CFG_NTLS=ntls:3133: host and port of the ntls server.

    • TT_LISTEN=0.0.0.0:32001: binary host/port, used for admin operations and replication.

    • TT_MEMTX_MEMORY=$((1024 * 1024 * 1024)): the maximum memory usage in bytes.

    • /opt/ffserver/tnt/: the directory on the host to store tntapi data.

  5. Create a default sf-api-migrate configuration file. You can find its default content here.

    docker run --rm -ti --entrypoint "/sf-api-migrate" docker.int.ntl/ntech/universe/sf-api:ffserver-12.240830.2 \
        --config-template > /opt/ffserver/configs/sf-api-migrate.yaml
    
    • /opt/ffserver/configs/: the directory on the host to store the configuration file.

  6. In the storage-api-from section, specify the old shards to migrate the data from.

    storage-api-from: # current location of the gallery
      ...
      shards:
        - master: http://tnt-old-1:8001/v2/
          slaves: []
        - master: http://tnt-old-2:8001/v2/
          slaves: []
      ...
    
  7. In the storage-api-to section, specify the new shards that will host migrated data.

    storage-api-to:
      ...
      shards:
        - master: http://tnt-new-1:8001/v2/
          slaves: []
        - master: http://tnt-new-2:8001/v2/
          slaves: []
      ...
    
  8. Run the sf-api-migrate utility with the configuration file.

    docker run --rm -ti --network server --entrypoint "/sf-api-migrate" \
        --volume /opt/ffserver/configs/sf-api-migrate.yaml:/sf-api-migrate.yaml \
        docker.int.ntl/ntech/universe/sf-api:ffserver-12.240830.2 \
        --config /sf-api-migrate.yaml \
    

    Use docker options:

    • --network: connect a container to a network, named server.

    Use configuration flags:

    • --volume /opt/ffserver/configs/sf-api-migrate.yaml:/sf-api-migrate.yaml: mount the configuration file from the directory on the host into the container.

    • --config /sf-api-migrate.yaml: provide path to the sf-api-migrate.yaml configuration file.

    Note

    The migration process can take up a significant amount of time if there are many features of object vectors in the tntapi database.

  9. Open the /opt/ffserver/configs/sf-api.yaml configuration file and adjust the shards ports, subject to the new shards settings.

    sudo vi /opt/ffserver/configs/sf-api.yaml
    
    storage-api:
      ...
      shards:
      - master: http://tnt-new-1:8001/v2/
        slaves: []
      - master: http://tnt-new-2:8002/v2/
        slaves: []
    
  10. To make sure that the migration was successful, send a request to the sf-api:

    GET /v3/galleries/:objtype/:gallery
    

    The emben_model field of the response must specify the model <new_model_face> to which the migration was performed, for example:

    HTTP/1.1 200 OK
    Content-Type: application/json
    X-Request-Id: SF:NZfBDUu0
    Date: Thu, 06 Jun 2024 09:41:01 GMT
    Content-Length: 83
    
    {"name":"hello","emben_model":"nectarine_m_160","emben_size":160,"objects":100114}